
 Studies
 in Quantitative Linguistics

 9

 Fan Fengxiang

 Data Processing and Management
 for Quantitative Linguistics

 with Foxpro

 RAM - Verlag

Data Processing and Management
for Quantitative Linguistics

with Foxpro

by

Fan Fengxiang

2010
RAM-Verlag

Studies in quantitative linguistics

Editors

 Fengxiang Fan (fanfengxiang@yahoo.com)
 Emmerich Kelih (emmerich.kelih@uni-graz.at)
 Reinhard Köhler (koehler@uni-trier.de)
 Ján Mačutek (jmacutek@yahoo.com)
 Eric S. Wheeler (wheeler@ericwheeler.ca)

1. U. Strauss, F. Fan, G. Altmann, Problems in quantitative linguistics 1. 2008,

VIII + 134 pp.
2. V. Altmann, G. Altmann, Anleitung zu quantitativen Textanalysen. Methoden

und Anwendungen. 2008, IV+193 pp.
3. I.-I. Popescu, J. Mačutek, G. Altmann, Aspects of word frequencies. 2009, IV

+198 pp.
4. R. Köhler, G. Altmann, Problems in quantitative linguistics 2. 2009, VII + 142

pp.
5. R. Köhler (ed.), Issues in Quantitative Linguistics. 2009, VI + 205 pp.
6. A. Tuzzi, I.-I. Popescu, G.Altmann, Quantitative aspects of Italian texts. 2010,

IV+161 pp.
7. F. Fan, Y. Deng, Quantitative linguistic computing with Perl. 2010, VIII +

205 pp.
8. I.-I. Popescu et al., Vectors and codes of text. 2010, III + 162 pp.
9. F. Fan, Data processing and management for quantitative linguistics with

Foxpro. 2010, V + 233 pp.

© Copyright 2010 by RAM-Verlag, D-58515 Lüdenscheid

RAM-Verlag
Stüttinghauser Ringstr. 44
D-58515 Lüdenscheid
RAM-Verlag@t-online.de
http://ram-verlag.de

mailto:fanfengxiang@yahoo.com
mailto:emmerich.kelih@uni-graz.at
mailto:koehler@uni-trier.de
mailto:jmacutek@yahoo.com
mailto:wheeler@ericwheeler.ca
mailto:RAM-Verlag@t-online.de
http://ram-verlag.de/

Preface

Imagine a researcher of Shakespearean plays is studying the Bard’s stylistic
characteristics with the quantitative approach. He has all the plays totalling about
a million words stored in XML files. The immediate task before him is to remove
all the XML codes from the files to get “pure” text. Next, he needs the following
data: a wordlist with frequencies and word length both in letters and syllables, the
vocabulary richness and frequency spectrum of each of the plays, lexical
similarity and distance among the plays, the average word length in syllables and
the average sentence length of each of the plays, collocations of certain words,
number of rare words—hapax legomena, vocabulary growth rate, etc. However,
life of a linguistic researcher is not as simple as that. To get a wordlist with word
frequencies he’ll need to lemmatize all the word tokens in those plays, and as the
research progresses, some ad hoc research inspirations may pop up and new data
are needed; he also has to constantly rearrange the data trying to find some
patterns and retrieve some for a closer look, etc. These tasks would take ages to
complete manually. The well known American scholar Ione Dodson Young used
25 years to make a concordance for the complete poetic works of Byron; she
started the work in 1940 and didn’t compete it until 1965!
 With Foxpro, a powerful data processing and managing system, all the above
can be done in a matter of a few minutes. This book, Data Processing and
Management for Quantitative Linguistics with Foxpro gives detailed descriptions
and instructions on how to gather, process and manage large amount of linguistic
data with this data managing system. This book is aimed at literary and linguistic
researchers, teachers and students at the undergraduate or postgraduate levels,
EFL/ESL teachers and students, etc. It is also a very good book for corpus
linguistics, text mining, information retrieval, and natural language processing.
No previous computer programming experience is required of the reader except
the ability to use the Windows Operating System.

All the examples for the commands and functions, as well as the
demonstration programs in the book, are literary/linguistic oriented and of the
author’s own creation, and the majority of them are immediately useful for
serious research, after changing only the input and output file names and their
path. This book can be used as a course book that takes roughly 36-lab hours to
complete; it can also be used for self-study. There is a CD-ROM attached to the
book with all the Foxpro tables, examples, demonstration programs and
non-copy-right textual materials for all the programs, exercises and model
answers to these exercises.

There are different versions of Foxpro, and the latest version is Visual
Foxpro 9. The Foxpro needed in this book is Foxpro 6 or higher. Foxpro can
process any language in the world; however, in this book, it’s used mainly to deal
with English, occasionally Chinese. With some changes, the programs in the
book can also be adapted to process other languages.

 II

The following are some suggestions for tackling this book.
Firstly, this book is not for reading, but for careful reading plus repeated

practice. That is, the reader should sit in front of the computer trying out each of
the operators, commands, functions and examples many, many times while
reading it. The operators, commands and functions in this book, totalling about
200, were carefully selected and are the most fundamental for linguistic
computing. In some other computer languages there are fewer commands and
functions; however, the users have to create commands and functions themselves
when needed, and this makes these types of languages more difficult to learn and
use for linguistic researchers and students. The reader of this book is not
expected to remember all these operators, commands, functions, etc, by heart. He
or she can always come back to this book to refresh his or her memory.

Secondly, as mentioned before, used as a course book, it’ll take about a
semester, roughly 36 lab hours to complete, and for each lab hour, the students
need at least two more hours for home practice. For self-study, it’ll take half a
year. A person hurrying through the book in 10 days will probably learn nothing.

Thirdly, all the examples and exercises were carefully planned. The reader is
not expected to solve all the problems in the exercises. One of the purposes of the
exercises is for making the reader think about the possible applications of the
operators, commands and functions etc learned; if the reader is unable to do the
exercises, that’s perfectly normal for a beginner; in such cases, go to the model
answers, analyse them and then try them out. This is an important learning
process.

Lastly, the author hopes that the above will not scare off potential readers.
Please bear in mind that there are no magic books in the world from which a
beginner can learn a computer language in 10 or 20 days. Learning a computer
language from scratch is not like reading Shakespeare or Goethe for the first time;
it’s a long and sometimes painful process, and patience and perseverance are a
must. But once learned, it’ll be an open sesame for the learner to the wonderful
linguistic and literary treasure trove that can last a life time.

The author is deeply indebted to Professor Gabriel Altmann for his insightful
suggestions for this book and for his constant stimulating research ideas from
which the author has benefited greatly; without his support this book wouldn’t be
possible. The author also wishes to thank Professor Reinhard Köhler for reading
the manuscript and for his expert advice.

Fan Fengxiang

Table of Contents
Preface ...I

1 Introduction ..1
1.1 Scope and Methods of Quantitative Linguistics ..1
1.2 Visual Foxpro, an Overview...2

1.2.1 Advantage and capacity ...2
1.2.2 System requirement and installation..2
1.2.3 Foxpro variables...3
1.2.4 Foxpro operators ..4
1.2.5 Commands and functions for math operations7
1.2.6 Foxpro programs ..14
1.2.7 Commands for Foxpro settings..15

1.3 Conventions Used in This Book...17
Exercises...19

2 Foxpro Tables ..23
2.1 Introduction ..23
2.2 Table Creation and Modification..23

2.2.1 Creating simple tables..24
2.2.2 Table modification ...26
2.2.3 Creating multiple field tables...28

2.3 Foxpro Table Work Areas...32
2.4 Data Input and Output in Tables...34

2.4.1 Data input ...34
2.4.2 Data output...50

2.5 Application ...52
2.5.1 Lexical comparison ..52
2.5.2 Processing multiple texts in a table..55
2.5.3 Vocabulary growth ...58

Exercises...61

3 Number Crunching and Pattern Matching in Foxpro Tables63
3.1 More Functions and Commands for Math Operation in Tables...............63
3.2 Moving the Record Pointer and Creating Conditional Statements65
3.3 Math Operation in Foxpro Tables ..71

3.3.1 Creation of frequency spectrum...71

 IV

3.3.2 The distribution of hapax legomena...73
3.3.3 Yule’s K ..74
3.3.4 Per word entropy of English ..75
3.3.5 Word length in syllables...76

3.4 Commands and Functions for Pattern Matching......................................80
3.5 Pattern Matching in Tables...88

3.5.1 Extraction of lexical bundles ...88
3.5.2 Collocational association of run ..91
3.5.3 Computing mean letter utility ..97

Exercises...100

4 String Manipulation in Tables and Texts..103
4.1 Commands and Functions ..103
4.2 Low-level File Functions ... 110
4.3 Set Up Relations Among Tables With a Common Field........................ 115
4.4 Applications.. 118

4.4.1 Processing double-byte languages ... 118
4.4.2 Corpora handling..122
4.4.3 Dealing with POS tags ...125
4.4.4 Making concordance ..128
4.4.5 Making annotated wordlists ...132
4.4.6 Computing word sense concentration..135

Exercises...140

5 Arrays, Procedures and User-defined Functions.....................................142
5.1 Commands and Functions for Arrays...142
5.2 Procedures ..151
5.3 User-defined Functions ..153
5.4 The do case command and iff() Function ...157
5.5 Some Commands and Functions for Miscellaneous Purposes...............160
5.6 Application ...165

5.6.1 Simulation of LNRE ..165
5.6.2 Lemmatization ...170
5.6.3 Extracting lexical information from multiple texts or tables...........182
5.6.4 Extracting information on word class distribution186

Exercises...190

6 Interactive Programming, Program Packaging and Foxpro Graphs....192

 V

6.1 Writing Interactive Programs ...192
6.1.1 Commands for keyboard input...192
6.1.2 Application ...193

6.2 Program Packaging ..194
6.3 Foxpro Graphs..197
Exercises...200

Appendix...201
I. Model Answers to Selected Exercises ...201

Exercises of Chapter 1 ..201
Exercises of Chapter 2 ..203
Exercises of Chapter 3 ..205
Exercises of Chapter 4 ..216
Exercises of Chapter 5 ..220
Exercises of Chapter 6 ..226

II. Foxpro Operators, Commands and Functions Covered in This Book.....227

Index ...231

1 Introduction

1.1 Scope and Methods of Quantitative Linguistics

Quantitative linguistics, as Köhler and Altmann define it, is the branch of
linguistics that studies the multitude of quantitative properties which are essential
for the description and understanding of the development and the functioning of
linguistic systems and their components. The objects of QL research do, therefore,
not differ from those of other linguistic and textological disciplines. In the
Preface to Quantitative Linguistics, an International Handbook, Köhler, Altmann
and Piotrowski list the following major areas of quantitative linguistics:
1. metricizing (scaling, quantifying, making measurable or quantitation, as M.

Bunge calls it) of linguistic entities and qualities, and thereby providing the
possibility of generating quantitative data from speech material based on
operationalisation and measurement,

2. quantitative analysis and description of linguistic and textual objects,
3. numerical classification of linguistic and textual objects for the purpose of

further investigation or for practical reasons,
4. development and application of statistical test procedures for diagnostic

comparison of linguistic and textual objects and for trend detection,
5. modelling of linguistic structures, functions, and processes by means of

quantitative models and mathematical methods,
6. theory construction by searching for universal laws of language and text and

their embedding into an extensive nomological net,
7. explanation of linguistic phenomena (properties, structures, processes) by

means of a theory,
8. embedding of linguistics into a general system of sciences, i.e. establishing

resp. exploring interdisciplinary relations in the shape of generalization,
analogy or specification,

9. elaborating a genuine linguistic methodology with regard to the particular
characteristics of the linguistic subject,

10. practical applications to various areas such as those in contexts of learning
and teaching, psychology/psycholinguistics/psychiatry, stylistics/forensics,
computational linguistics and language technology, documentation science,
content analysis, language planning, mass communication research and more.

Quantitative linguistics relies on quantification, measurement and ranking of
components of a linguistic system and is generally data-intensive. However, the
processing and management of large amount of linguistic data are extremely time
consuming, tedious and error prone. Suppose we want to study the stylistic
characteristics of Dickens’s works, which total more than 5,000,000 words, such
as vocabulary richness, word frequency distribution, etc. This can’t be done
manually, and a set of programs in a computer language are needed. But as the
research progresses, some ad hoc tasks may arise, which may need the

Introduction 2

rearrangement of the data or the extraction of new data etc. In such cases more
programs would be needed. If there is a computing tool that extracts data from a
text or collection of texts and stores the data in an organized way for further
processing or retrieval using a few simple natural-language-like commands
instead of a set of complicated programs, the life of concerned researchers would
be much simpler and more enjoyable since they themselves can use such a data
processing and managing tool.

1.2 Visual Foxpro, an Overview

1.2.1 Advantage and capacity

Visual FoxPro (hereafter referred to as Foxpro) is a powerful and widely used
computer database management system. It has a set of natural-language-like
commands and functions for data processing and management. In addition, these
simple commands and functions can be put together to form a program for
continuous data manipulation. It’s particularly suitable for linguistic computing
because of the following:
1. It stores data in tables for processing and retrieval.
2. It has a set of easy-to-use, natural-language-like commands and functions for

table handling.
3. It’s very user-friendly; many of the commands and functions can be entered

in its command window with instant results displayed on the screen.
4. It can perform complicated math operations and string manipulation. There is

virtually no limit to what it can do in quantitative linguistic computing.
The only disadvantage of Foxpro is that the user has to pay for it, but considering
the long term benefit it can bring to us, the money is well worth paying.

1.2.2 System requirement and installation

The latest version of Foxpro is Visual Foxpro 9.0. For linguistic computing,
Visual Foxpro 6.0 is quite enough and is used throughout this book. Visual
Foxpro 6.0 and higher requires an IBM-compatible computer with a Pentium
class processor, with at least 128 MB RAM, and 500 MB free disc space. For
operating systems, Visual Foxpro 6.0 and 7.0 are supported on Windows 98 or
higher. While Visual Foxpro 8.0 is supported on Windows 2000 Service Pack 2
or higher, and Windows XP; Visual Foxpro 9.0 is supported on Windows 2000
Service Pack 3 or higher, and Windows XP. Commands, functions and operators
of Visual Foxpro 6.0 and programs written in it can run in higher versions.
Foxpro is very easy to install: shut down all the running application packages
such as Microsoft WORD, insert the Foxpro CD-ROM, click Prerequisites and
the setup will start until it’s completed.

Introduction 3

 Start Foxpro and the main Foxpro window with its menu bar and command
window appears, as shown in Figure 1.1. The command window can be hidden
by clicking on the command window icon on the menu bar; click on it again the
command window reappears. Its size can be adjusted by dragging one of its sides
with the mouse.

Figure 1.1 The Foxpro window with its menu bar and command window.

1.2.3 Foxpro variables

A Foxpro variable is a temporary storage that stores whatever it is given. They
exist as long as Foxpro remains open after they are created. The name of a
variable can be a single or a cluster of alphabetic characters and the underscore
character “_”. Arabic numerals can be used with these characters in variable
names as long as they are not placed initially. The following are valid variable
names:
a, counter, text_1, nloop, read_a, c_34, change_case, no_410, count_it, word,
wordlist, length, etc.
 Punctuation marks and characters such as *, -, +, =, (,), [,], {, }, %, @, &, ^,
$, ~, \, /, |, >, <, %, #, etc, and Arabic numerals used alone or placed initially, are
not allowed in naming variable. The following are invalid variable names:
1, 284, $12, @, *w, b-13 &text, word-length, \get_text, word>, etc.
 Words used in Foxpro built-in functions and commands can’t be used alone

Introduction 4

as variable names, either. For example, do, if, count, list, display, delete, shared
and so on, but they can be used as variable names together with other legal
characters, e.g. count_word, list_texts etc. Foxpro variable names, commands and
functions are not case sensitive, so the variable name read_text is the same as
Read_Text.
 We can store data in a variable by using the command store…to or the equal
sign =. This is called value assignment. For language processing, we mainly use
two types of data in Foxpro: numeric data such as 34.56, 1003, and character data,
such as a, G, apples, words, that is easy and so on. If we have a variable v1, we
can assign any numeric or character value to it. When we assign character values
to a variable, the characters must be enclosed between a pair of single quotes or
double quotes. The result can be outputted to the screen by putting a question
mark before the variable. Now start Foxpro and type the following in the
command window. The sign ↵ stands for “press Enter”:

number1=567 ↵
? number1 ↵
567

store 271 to number2 ↵
? number2 ↵
271

Phrase_a='Visual FoxPro' ↵
?phrase_a ↵
Visual FoxPro

store 'Quantitative Linguistics' to phrase_b ↵
?phrase_b ↵
Quantitative Linguistics

1.2.4 Foxpro operators

Foxpro has three major types of operator: character operators, numeric operators
and relational operators.
1. Character operators: +, -, =, ==, $. + joins two strings together. - removes the
trailing spaces of a string and then joins it with another string. = and == match a
character or a string on the left with another character or string on the right. The
character matching mode of = or == depends on the Foxpro commands set exact
on and set exact off. If the command set exact on is issued, for the return value
to be true, the two strings to be matched must be exactly the same; if set exact off
(the default setting) is issued, for the return value to be true, the length of the two

Introduction 5

strings doesn’t have to be equal; the second string can be shorter than the first
string, and as long as the characters of the two strings match one for one starting
from the left of the strings until the end of the second string is reached, the return
value is true. == checks whether a string exactly matches another string; the set
exact on and set exact off commands have no affect on it. $ checks whether a
string is contained in another string. Unlike in Foxpro commands and functions,
string literals (strings placed in single quotes or double quotes) are case sensitive.
Now type the following in the command window and see the results. && is used
at the end of a statement to mark comments or explanations. It’s non-executable
and is ignored by the computer.

? ' Fox ' +'pro' ↵ &&there is a space after Fox
Fox pro

? 'Fox '- 'pro' ↵ &&there is a space after Fox
Foxpro

? 'Foxpro '= 'Fox' ↵
.T.

? 'Foxpro '= 'fox ' ↵
.F.

? 'Fox '= 'Foxpro ' ↵
.F.

? 'Foxpro '= 'Foxpro' ↵ &&there is a space after the first Foxpro
.T.

? 'Foxpro '==' Fox' ↵
.F.

? ' Foxpro'==' Foxpro' ↵
.T.

set exact on ↵
? 'Foxpro'='Fox' ↵
.F.

? 'Foxpro '='Foxpro' ↵ &&there is a space after the first Foxpro
.F.

Introduction 6

? 'Fox’$’Foxpro' ↵
.T.

? 'fox'$'Foxpro' ↵
.F.

 In Foxpro, the white space separating two words is also regarded as a
character and can be assigned to a variable. One way of representing the white
space is putting a white space between a pair of single quotes or double quotes.
We can also assign nothing to a variable by using a pair of quotes without
anything in between.

space=' ' ↵ &&there is a white space between the quotes
? 'Fox'+'pro' ↵
Foxpro

? 'Fox'+space+'pro' ↵
Fox pro

nothing='' ↵ &&no space between the quotes
? 'Fox'+nothing+'pro' ↵
Foxpro

2. Numeric operators: +, addition; -, subtraction; *, multiplication; /, division; **
or ^, exponentiation; %, modulo (the remainder). Now type the following in the
command window:

?5*6-30 ↵
0

?(45+67)/22**2 ↵
0.23

?11%2 ↵
1

3. Relational operators: <, less than; >, greater than; =, equal to; >=, greater than
or equal to; <= less than or equal to; <>, #, !=, unequal to. Now type the
following in the command window:

?23>56 ↵
.F.

Introduction 7

?45>2 ↵
.T.

?5>=4 ↵
.T.

?6<=3 ↵
.F.

?7<>8 ↵
.T.

?9=10-1 ↵
.T.

Except <= and >=, these operators can also be used for string comparisons:

? 'm'> 'n' ↵
.F.

? 'b'> 'a' ↵
.T.

? 'What'<> 'what' ↵
.T.

? 'what'='what' ↵
.T.

1.2.5 Commands and functions for math operations

Apart from math operators, there are commands and functions for math
operations. The following are some of them.

 set decimal to decimalplace This command sets decimal places for math
operations. The default decimal place of Foxpro is 2. Now type the following in
the command window:

 ?10/3 ↵
 3.33

 set decimal to 5 ↵

Introduction 8

 ?10/3 ↵
 3.33333

 set decimal to 0 ↵
 ?10/3 ↵
 3

 Foxpro allows the user to shorten the components of a command or function
down to four letters if they are longer than four letters. For example, the above
command can be written as set decima to, set decim to or set deci to, but not set
dec to.

 abs(n) This function returns the absolute value of n. Type:

 ?abs(-5) ↵
 5

 log(n), log10(n) The former returns the log of a number to the natural base
e and the latter to the base 10. Type the following in the command window:

 ?log(20) ↵
 2.9957

 ?log10(20) ↵
 1.301

 Foxpro doesn’t have a built-in function for log to the base 2. We can convert
log(n) and log10(n) to the base 2 using the following:

log(n)/log(2)

log10(n)/log10(2)

?log(100)/log(2) ↵

 6.643856

 ?log10(100)/log10(2) ↵

6.643856

To check whether this result is correct, type

 ?2**6.643856 ↵

Introduction 9

the result is 100.

 pi() This function returns the constant π. Now type:

 set decimal to 4 ↵
 ?pi()
 3.1416

 round(n, decimalplace) This function rounds off decimal numbers. Now
type:

 ?round(3.1415926,3) ↵
 3.142

 ?round(1.9,0) ↵
 2

We can shorten round in this function to roun. Type:

?roun(3.1415926,3) ↵
3.142

?roun(1.9,0) ↵
2

 int(n) This function discards decimals and keeps only the integer part of a
number:

 ?int(10.96) ↵
 10

 floor(n) This function returns the nearest integer that is less than n (n is a
decimal number):

 ?floor(-10.8) ↵
 -11

 ?floor(10) ↵
 10

 ?floor(10.8) ↵
 10

Introduction 10

 ?int(-10.8) ↵
 -10

 ?int(10.8) ↵
 10

 ceiling(n) This function returns the next highest integer that is greater or
equal to n:

 ?ceiling(-10.8) ↵
 -10

 ?ceiling(10.8)
 11

 between(n1, n2, n3) This function tests whether n2 is smaller than n1 and
n3 (n3≥n1) in value:

 ?between(255,189.5,263.) ↵
 .T.

 ?between(255,189.5,240) ↵
 .F.

 ?between (5,7,12) ↵
 .F.

This function can also be used for characters:

 between('cat', 'ant', 'dog') ↵
 .T.

?between('cat', 'ant', 'ax') ↵
.F.

 ?between(' cat', 'fox', 'horse') ↵
 .F.

 rand() This function generates random numbers between 0 and 1. Type:

 set deci to 4 ↵
 ?rand() ↵

Introduction 11

 0.8723

 ?rand() ↵
 0.0237

 set deci to 15 ↵
 ?rand() ↵
 0.851390329189599

 ?rand() ↵
 0.213546234443784

 To generate a series of random numbers with maximum randomness, use this
function with a negative number in the brackets first and then use the function
without any number in the brackets. Suppose we want to generate five random
numbers, type:

 rand(-391) ↵
 ?rand() ↵
 0.45

 ?rand() ↵
 0.13

 ?rand() ↵
 0.12

 ?rand() ↵
 0.89

 ?rand() ↵
 0.36

 mod(n1, n2) This is the same as the % operator, which returns the
remainder of n1 divided by n2:

 ?mod(10,2) ↵
 0

 ?mod(20,3) ↵
 2

Introduction 12

 sqrt(n) This function returns the square root of a number. Type:

 ?sqrt(100) ↵
 10

 ?sqrt(35.67) ↵
 5.9724

 exp(n) This function returns the nth power of the natural base e 2.71828.
Set decimal to 5 and then type:

 ?exp(1) ↵
 2.71828

 ?exp(10) ↵
 22026.4658

 cos(n) This function returns the cosine of n in radians. Type:

?cos(1) ↵
 0

 ?cos(pi()) ↵
 -1

 acos(n) This function returns in radians the arc cosine of n. The value of n
ranges from -1 to +1. Type:

 ?acos(-1) ↵
 3.1416

 ?acos(1) ↵
 0

 sin(n) This function returns the sine of n; n is expressed in radians. Type:

 ?sin(30) ↵
 -0.988

 ?sin(pi()/2) ↵
 1

Introduction 13

 asin(n) This function returns in radians the arc sine of n. Type:

 ?asin(1) ↵
 1.5708

 ?asin(0.8) ↵
 0.9273

 tan(n) This function returns the tangent of n; n is expressed in radians.
Type:

 ?tan(1) ↵
 1.557

 ?tan(pi()/4) ↵
 1

 atan(n) This function returns in radians the arc tangent of n. Type:

 ?atan(1) ↵
 0.7854

 ?atan(2) ↵
 1.1071

 dtor(n) This function converts n in degrees to radians. Type:

 ?dtor(90) ↵
 1.5708

 ?dtor(180) ↵
 3.1416

 rtod(n) This function converts n in radians to degrees. Type:

?rtod(3.1416) ↵
 180.004

 ?rtod(1.5708) ↵
 90.002

 To clean the main Foxpro window of the output produced by the commands

Introduction 14

and functions we have issued, use the command clear. Now type:

 clear ↵

1.2.6 Foxpro programs

There are two modes of executing Foxpro commands and functions. One is what
we have been doing now, that is, using the command window to execute
commands and functions; the other is putting commands and/or functions in a file
and let the computer carry out these commands and functions in the file one by
one from the top to the bottom of the file. Such a file is the so called program.
Foxpro programs have the file extension prg.
 Before learning how to write a program, we’ll look at the command needed
for writing or revising programs or text files.

 modify | [command [programname]] [file [filename]] |

If we type only modify command ↵ in the command window, an empty file called
program1 appears, in which we can write our program and then give it a name
and save it. We can also type modify command followed by the program name,
say, prog, and an empty file with the name of prog.prg appears, in which we can
enter our program and then save it. If we want to revise the program after it’s
completed and closed, just type modify command prog ↵ in the command
window and the program appears for our revision. If we change command into
file, we can create or modify a text file. Now let’s write our program. Type
modify command ↵ in the command window, and then type the following into the
empty file:

 phrase1='This is the first '
 phrase2='Foxpro program'
 ?phrase1+phrase2
 ? “We'll first perform math operations. 67*45+56.3/2**3=?”
 a= 67*45+56.3/2**3
 ?a
 ? 'What is the remainder of 17 divided by 5?'
 ?17%5

After completing this little program, click File on the Foxpro menu bar and select
Save as and then select a drive and folder and save it as firstprog.prg in one of
your folders on your computer; the prg extension is automatically added. To run
it, click the red exclamation mark on the menu bar or type do firstprog ↵ in the
command window, and the result is shown on the main Foxpro window. To close

Introduction 15

the program, click the × sign on the upper right corner of the program. It can be
opened again by either typing modify command firstprog in the command
window, or click on File on the menu bar and select open, and select program in
the file type box of the open file window, and locate the folder of the program and
then get it.
 We can also use another way to start writing a program. Click the new file
icon on the menu bar of the Foxpro window to get the file type selection box.
Select program and then click on New file, an empty file appears. We can then
write our program in it and then save it.
 In Foxpro programs, a line consisting of commands, functions, operators etc
and ending with a carriage return is called a statement. If a statement is too long,
we can break it into two or more lines with a semicolon followed by a carriage
return, as shown below:

create table lexinfo(texts c(25),tokens n(8), vocsize n(4),freq1 n(5),freq2;
n(5),freq3 n(5),freq4 n(5))

Although there are two lines, they form only one statement. In some programs in
later chapters there are statements like the following:

create table lexinfo(tablename c(25),tokens n(8),textvoc n(6),vocgrowthn
(4),freq1 n(5), freq2 n(5),freq3 n(5),freq4 n(5),freq5 n(5),freq6 n(5),freq7
n(5),freq8 n(5))

These three lines are actually one long line wrapped around by the word
processor because of the width of the page; there is no semicolon or carriage
return at the end of the “first line” and “second line”. In cases like this the reader
should enter the statement as one line in the program editor or break it into two or
more lines with semicolons followed by a carriage return. Otherwise the program
won’t run.

1.2.7 Commands for Foxpro settings

Foxpro commands, functions and programs can be executed under different
Foxpro settings. There are commands for Foxpro settings, and we have learned
some of them, e.g. set exact on, set exact off, set decimal to, etc. The following
are some other commands for Foxpro settings.

 set safety on This is the default setting. In this setting, when a file is going
to be overwritten, deleted etc, the computer pauses to ask for the user’s
confirmation. This setting is seldom used in programs because the user has to sit
in front of the computer during the execution of a program to give instructions

Introduction 16

until the execution is completed, otherwise the computer would pause
indefinitely.

 set safety off This command allows the computer to overwrite a file or
replace a file with another file that has the same filename without notifying the
user, often used in programs.

 set talk on This is the default setting. In this setting, when a program is
running, real time information is displayed in the Foxpro window on the progress
of the program. This setting slows down the computer considerably.

 set talk off In this setting, real time information display is suppressed and
the computer is much faster than in the set talk on setting.

 set default to path This command tells the computer of the default drive
and folder so that it can get files from or save files to that drive and folder.

 cancel This command stops a program from where it is issued, often used
for checking the results of a statement or for debugging. Now open firstprog.prg
we’ve just written and put cancel after the third statement:

 phrase1='This is the first '
 phrase2='Foxpro program'
 ?phrase1+phrase2
 cancel
 ?”We'll first perform math operations. 67*45+56.3/2**3=?”
 a= 67*45+56.3/2**3
 ?a
 ? 'What is the remainder of 17 divided by 5?'
 ?17%5

Save the program and then run it. It stops after the third statement.

 * This command is always put at the leftmost position of a statement in a
program for the computer to ignore this statement. This command is very useful
for adding notes and comments in a program. Type the following in the command
window:

 This statement tests the function of * ↵

The above statement resulted in an error message. Now type:

 * This statement tests the function of * ↵

Introduction 17

The computer simply ignored the statement and no error message was given. We
can use * to add notes to a program so that long after the program is written we
can still understand it. It’s also good practice to put a brief note stating the aim of
the program at the top of it. Don't put a semicolon at the end of a note because
the computer would take the next statement as part of the note and the program
may crash. We can also use * to prevent a statement from being executed. Now
open firstprog.prg again and revise it as follows:

 *This is the first Foxpro program
 phrase1='This is the first '
 phrase2='Foxpro program'
 ?phrase1+phrase2
 *?”We’ll first perform math operations. 67*45+56.3/2**3=?”
 *a= 67*45+56.3/2**3
 *?a
 ? 'What is the remainder of 17 divided by 5?'
 ?17%5

Run it and see the result.

1.3 Conventions Used in This Book

In explaining Foxpro commands and functions, this book uses the following
conventions:
1. The commands and functions are written in bold except the brackets. The
user-specified components of a command or a function are written in plain italics.
For example, in the function round(number, decimalplace), which are for
rounding off decimals, the function itself is round(); number and decimalplace
should be replaced by the user with a decimal number and the desired decimal
places.
2. In cases where a command contains several optional expressions, the options
are in square brackets; if two or more optional expressions in square brackets of
the same level are between a pair of vertical lines, only one expression can be
selected. For example, in the command append from filenames | [sdf]
[delimited with |[tab] [blank] [character]|] | [fieldnames] [for condition],
append from filename should be followed by either sdf or delimited with plus
one of the options tab, blank or character, and/or followed by fieldnames or for
condition or both. If there are three dots in a command or function, the three dots
represent more optional expressions. For example, in create table
tablename(fieldname1 c(width) [, fieldname2 n(digit)] [, fieldname3 m(4)]…),
the three dots mean more such expressions can follow.
3. Foxpro tables have the file extension of dbf, e.g. wordlist.dbf, vocgrowth.dbf

Introduction 18

etc; and Foxpro programs have the file extension of prg, e.g. tokenizer.prg,
binomial.prg etc. In this book Foxpro tables are referred to without the file
extension while other types of file are referred to with their file extensions. For
example, wordlist.dbf is referred as wordlist, and vocgrowth.dbf as vocgrowth,
etc.
 The programs and data used in this book are placed at the RAM-Verlag on
the Internet, as well as on a CD-ROM, and it has the following structure:

Figure 1.2 Folder structure

The contents of the folders are as follows:
practice: for holding programs, tables, texts etc created by the reader during
practice, currently empty.
progs: containing all the Foxpro programs in this book, including the model
programs for exercises at the end of each chapter. These programs were all
written by the author and computer tested.
table1: containing three sets of wordlist tables. Each set has 50 wordlists made
from 50 2000-word random samples from the BNC spoken text section. The
difference among the sets is that one set is unlemmatized, one is lemmatized, and
the third one has POS tags.
table2: containing three sets of wordlist tables. Each set has 50 wordlists made
from 50 2000-word random samples from the BNC written text section. The
difference among the sets is that one set is unlemmatized, one is lemmatized, and
the third one has POS tags.
table3: holding tables such as 80vgrowth, postable, filename, wordlist and so on.
texts: containing Lewis Carroll’s Alice’s Adventures in Wonderland (alice.txt),
Through the Looking-glass (lglass.txt), 48 text chunks from alice.txt (text1.txt to
text48.txt), a short passage in Chinese (chinese.txt), several supporting text files
for some programs etc.
 Copy or download the entire fox folder to a drive on your computer, say, d
and make d:\fox\practice the default directory for your Foxpro practice by
entering the following in the Foxpro command window:

 set default to d:\fox\practice ↵

From now on we assume the default drive and folder on your computer for
Foxpro practice is d:\fox\practice. At the end of each chapter there are exercises,

Introduction 19

some of which have model answers in Model Answers to Selected Exercises in
Appendices A. Foxpro can process any type of language, but the language
processed with Foxpro in this book is mainly English.
 We have now had a glimpse of Foxpro. In the following chapters we’ll have
a detailed look at its commands, functions and utilities that can be used in
linguistic computing. Apart from the commands, functions and utilities that are
covered in this book, there are quite a number of other commands, functions and
utilities that are of no immediate use for language processing. Interested readers
can learn to use them through books on Foxpro that contain introductions to these
commands, functions and utilities. Please be noted that all the textual data to be
processed with Foxpro must be in pure text forms. If a text to be processed is a
WORD document, convert it to a pure text file with the txt extension in WORD.
For ease of explanation, from now on we’ll put line numbers in our Foxpro
programs. But the reader should never put line numbers in Foxpro programs
intended for running because Foxpro does not allow line numbers in its
programs.

Exercises

1. Assign the following values to properly named variables and output the values
of the variables to the screen.
a. 34.56
b. Foxpro is a powerful data managing system

2. Assign each of the following words to different variables, join these variables
together and output the result to the screen.
 Foxpro
 has
 a
 high
 level
 computer
 language.

3. The Type/Token ratio (TTR) is obtained with
Tokens
TypesTTR = . However, Laufer

& Nation and Biber et al use the following:

a.
tokens
typesTTR 100= .

While Köhler and Galle propose a method for calculating the type/token ratio of

Introduction 20

a section of a text, TTRx:

b.
N

N
xTTt

TTR
x

x

−+
= ,

where x is the length of the section of the text, tx the number of types of a section
of a text, T the total number of types of the text, N the length of the entire text. If
tx = 400, x = 1000, T = 1200, N = 2000, calculate TTR and TTRx using a and b.

4. Fan and Altmann tested the following hypothesis: the shorter a word (the
number of syllables it has) the more compounds it can form. This relationship
can be expressed with the following:

CN = bL-a

where CN is the number of compounds, L the word length measured in syllables,
and b, a are parameters. If a = 2.3212, b = 30.2693, check the fit of the above
relationship to the following empirical data:
Word syllable length Observed mean number of compounds
 1 30.29
 2 5.86
 3 2.01
 4 2.71
 5 0.69

5. Do the following.
a. One of the methods for N-gram smoothing is the add-one smoothing. The
smoothed probability of a N-gram is obtained with

VN
cP i

+
+

=
1

,

where ci is the observed frequency of a N-gram in a corpus, N is the frequency of
the first word of the N-gram, and V the size of vocabulary. Calculate the
smoothed probability of the bigram inside out and happy time from a corpus
whose vocabulary size is 13,500. The frequency of inside out and happy time is
respectively 3 and 2; the frequency of inside and happy is respectively 23 and 45.
b. Another N-gram smoothing method is the Good-Turing estimation. The
smoothed probability of a N-gram is obtained with

Introduction 21

N
N

N
cP

c

c 1)1(++= ,

where c is the count of N-grams of certain frequency (frequency of frequencies),
Nc is the number of N-grams with count c, and N is the frequency of the first
word of a N-gram. The following is part of the frequency distribution of the
bigrams of a corpus.

C Number of bigrams
1 10043
2 2331
3 1125
4 532

If the bigrams run rampant and strong tea respectively occur once and 3 times in
this corpus, and run and strong respectively occur 145 times and 76 times,
calculate the smoothed probability of the two bigrams using the Good-Turing
estimation.

6. In performing the ANOVA test on sets of data consisting of percentages such
as 23%, 36%, 67% etc, to normalize the data and stabilize the variances, we can
use the arc sine square root transformation to transform the data and then convert
the result of the transformation into angle degrees. The arc sine square root
transformation procedure is as follows:
a. get the square root of each of the values of the data sets,
b. get the arc sine of the square root,
c. convert the radians into degrees.
Now do the arc sine square root transformation to the following set of data:
12%, 15%, 17%, 20%, 22%, 27%, 30%, 34%, 35%, 39%, 40%, 44%

7. Tuldava proposes that the relationship between vocabulary size V and the
length of text is βα)(ln NNeV −= , while Guiraud and Sánchez & Cantos describe
such relationship with NaV = . If for Tuldava’s model α = 0.009152, β =
2.3057, N = 1000000; for Guiraud, Sánchez & Cantos’s model α = 65.7365677,
and N = 1000000; calculate V of both models.

8. Honoré proposed the following relationship:

)(
),1(1

ln100

Nv
Nv

NH
−

= ,

N is the length of a text, v(1,N) the number of hapax legomena. H is more or less

Introduction 22

constant. Now calculate H for:
a. N = 98000, v(1,N) = 3473,
b. N = 182000, v(1,N) = 4536.

9. Popescu, Mačutek and Altmann explored the possibility of using the arc length
of rank-frequency distributions in text characterization and language typology.
The arc length of rank-frequency distribution L is expressed as follows:

2/1
1

1

2 }1)]1()({[++−=∑
−

=

V

r

rfrfL ,

where V = vocabulary size of a text; r = rank of word frequency, with the highest
frequency being r = 1; f(r) = word frequency at rank r. Write a program called
arclength.prg to compute the arc length of the following imagined word
rank-frequencies (V = 20):
 Rank Frequency
 1 1635
 2 872
 3 825
 4 730
 5 687
 6 540
 7 531
 8 528
 9 513
 10 410
 11 398
 12 367
 13 364
 14 315
 15 274
 16 263
 17 247
 18 211
 19 194
 20 182

10. Compute the following:

)812(43)3311102(
2578
340056.5775422483.100938 −−×+÷−× .

2 Foxpro Tables

2.1 Introduction

In Foxpro data are mainly stored and handled in Foxpro tables. Like ordinary
tables, Foxpro tables consist of rows and columns. A row in a Foxpro table is
called a record, and a column a field. A Foxpro table can have as many as 1,000
million records and 255 fields, forming 1,000 million × 255 cells, and each can
hold an item of data. This item of data can be a word, a number or any other
types of alpha-numeric data. These cells can be used to store linguistic data such
as words or phrases, word frequency, word length, sentence length and so on. The
maximum width of a field for non-numeric data is 254 characters, wide enough
for any word or phrase. There is a special type of field, the memo field, which
can store data of unlimited length. This is particularly useful for storing sentences
or texts. For numeric data, the width of a field is 20 digits. Apart from
alpha-numeric data, a field can also store graphic data such as charts, pictures
and so on. Data of this sort is called general data. All Foxpro tables have the file
extension dbf.
 Figure 2.1 is part of a Foxpro table called wordlist (in d:\fox\table3). It
contains the vocabulary of 500 2000-word samples randomly drawn from the
written text section of the BNC. The table has five fields: word, freq, rng,
wlength and note. The first four fields hold respectively words, frequency, range
(the number of samples a word occurs in) and word length in letters. The fifth
field is a memo field, which has the cell marker memo in all the cells. Double
click on the cell marker memo and the contents are displayed on the screen. If a
cell in a memo field contains data, its cell marker is Memo, instead of memo. We
can see now only the sixth and seventh cells of the note field contain data but the
rest are empty. The width of the word field is 25 characters, wide enough for
holding words; the width of the freq field, rng field and wlength field are
respectively 10 digits, 10 digits and 6 digits. The naming of a table, as well as its
fields, is the same as that of Foxpro variables, but it’s better for the names to be
suggestive. If we want to create a table to hold two sets of wordlists and their
respective frequency, we can name the table wordlist, and the fields word1,
word2, freq1, freq2.

2.2 Table Creation and Modification

Foxpro tables can be classified into simple tables and multi-field tables. The
former has under 11 fields and the latter 11—255 fields.

Foxpro Tables 24

Figure 2.1 Table wordlist and its fields

2.2.1 Creating simple tables

The command for creating a table is as follows:

create table tablename(fieldname1 c(width) [, fieldname2 n(digit)] [,
fieldname3 m(4)]…)

In the table creation command, the letters c, n and m before (width), (digit) and (4)
respectively stand for character field, numeric field and memo field. width and
digit stand for the width of the field, i.e. how many characters or digits a cell of a
field can hold. They should be replaced by the user with numbers in actual table
creation. If we want the table to hold strings and numbers up to 25 characters and

Foxpro Tables 25

10 digits in width, put 25 and 10 in the fields respectively. As mentioned before,
for character fields the maximum width is 254, for numeric fields it’s 20 digits,
including the decimal point. By convention the width of the memo field is always
4, but it can contain data of almost any length. If we wish to hold decimal
numbers in a numeric field such as 390913.1416, replace n(digit) with n(11,4)
because the total length of 390913.1416 is 11 digits (including the decimal point),
and has 4 decimal places.
 Now let’s create a table called table1 with the same field names as wordlist,
but with different field width. The width of the character field is 45 while those
of the numeric fields are respectively 12, 7 and 6. The freq field hold decimals
with 6 decimal places. Now type in the command window:

 set default to d:\fox\practice ↵

then type:

create table table1(word c(45),freq n(12,6),rng n(7),wlength n(6),note m(4))
↵

table1 is now created and it’s in d:\fox\practice. To view it, type browse in the
command window. To hide it from the screen, either press Esc or click on the ×
sign on the upper right corner of the table. The commands to close a table is use,
which physically closes the table; or

 close | [databases] [all] |

close databases closes all open tables while close all closes all tables, programs
and text files that are open in Foxpro. Now type:

 use ↵

table1 is physically closed. The command to open a table is

 use tablename

To open table1 and view it again, first make sure you are now in its drive and
directory, and type:

 use table1 ↵
 browse ↵

table1 appears again. If you are not in its drive and directory, type:

Foxpro Tables 26

 use d:\fox\practice\table1 ↵
 browse ↵

To close it again type:

 close databases ↵

 Once a table is created using the create table command, the table is stored on
the hard disc and can be closed and opened as we wish. The following table
creation command creates a temporary table. Once it’s closed, it’s erased and
can’t be opened again.

 create cursor tablename(fieldname1 c(width) [, fieldname2 n(digit)] [,

fieldname3 m(4)]…)

Now enter in the command window the following statement:

 create cursor temp(word c(25),freq n(5),rng n(4),wlength n(4),note m(4)) ↵
 browse ↵

A temporary table called temp with five fields is created and we can input data to
it or output data from it. But once it’s physically closed it’s automatically
removed and can’t be accessed again. Tables thus created are often used in
programs that need temporary tables that are of no use after program execution
so that we don’t have to delete them manually.

2.2.2 Table modification

There are commands for modifying the structure of a table, e.g. changing its field
width, data types, decimal places, dropping a field, adding a field or renaming a
field. We can modify the structure of a table either manually or automatically.
The command for manual modification is as follows:

 modify structure

Unlike other commands we have learned, this one is used only in the command
window. Now open table1 again and type in the command window:

 modify structure ↵

the table designer appears as shown in Figure 2.2. If we want to reduce the width
of word to 25 characters, either type 25 in the width box, or scroll the down

Foxpro Tables 27

arrow until the width is 25. To change the data type of rng from numeric to
character with a width of 10, click on the down arrow and select character and
then select 10 in width; to drop the field note, click on it to mark it and then click
delete; to change the decimal places of freq from 6 to 0, delete 6 in the decimal
box; to add a numeric field called random with width 18 and 15 decimal places,
click on the empty box under field and enter random in it, then select numeric in
the data type box and scroll the down arrow of the width box and decimal box
respectively to get the desired width. Click on OK and the modification is
completed.

Figure 2.2 Table Designer

The following command is for automatic table modification:

 alter table tablename [alter column fieldname datatype(width)] [rename
column oldfieldname to newfieldname] [drop fieldname] [add fieldname
datatype(width)] This command can be used either in the command window or
in programs. Now open table1 again. Suppose we want to change the width of
word to 30, width of freq to 10 with 4 decimal places, the data type of rng back
to numeric with a width of 6 digits, rename wlength to length, discard random

Foxpro Tables 28

and add a character field context with a width of 100, type in the command
window:

alter table table1 alter column word c(30) alter column freq n(10,4) alter
column rng n(6) rename column wlength to length drop random add context
c(100) ↵
browse ↵

2.2.3 Creating multiple field tables

There are occasions when we need a table with multiple fields. For example, a
table with 85 fields will be needed if we want to hold the vocabulary growth data
of 80 sets of samples from a mega-corpus, as well as token number, mean
vocabulary growth of the 80 sets, the standard deviation of the individual
vocabulary growth of the 80 sets, and the 95% confidence intervals of the
vocabulary growth. Such a table is almost impossible to create by entering
commands in the command window. We can write a program to do it
automatically. Before writing the program, we’ll first look at the following
commands and functions.

 & & is Foxpro’s macro operator, which can turn a string literal into a
Foxpro command. Now hide table1 if it’s still visible on screen, and type:

word='browse' ↵
? word ↵
browse

the word browse is outputted to the screen. Now enter the following:

word='browse' ↵
&word ↵

Instead of the word browse, table1 appears because the macro operator & regards
the string literal browse stored in the variable as the command browse. Enter the
following in the command window:

 maketable='create table table2(v1 n(8), v2 n(8), v3 n(8), v4 n(8)) ' ↵
 ?maketable ↵
 create table table2(v1 n(8), v2 n(8), v3 n(8), v4 n(8))

the value of maketable is outputted to the screen.
 &maketable ↵

Foxpro Tables 29

a table called table2 with four fields is created.

 at(character,string) This function measures the position of the first
occurrence of a character or characters in a string. Now type:

?at('r', 'tomorrow') ↵
5

The above statement measures the position of the first occurrence of r in
tomorrow, which is 5.

 rat(character,string) This function measures the position of the last
occurrence of a character in a string. Now type:

?rat('r', 'tomorrow') ↵
6

 left(string,n) This function gets n characters from a string from the left side
of the string. Now type:

 ?left('Foxpro',3) ↵
 Fox

 right(string,n) This function gets n characters from a string from the right.
Type:

 ?right('Foxpro',3) ↵
 pro

 alltrim(string) This function removes spaces on either side of string. Type:

 string1='anti' ↵
 string2=' clock ' ↵ &¬e the white space on either side of clock
 string3='wise' ↵
 string=string1+string2+string3 ↵
 ?string ↵
 anti clock wise

 string=string1+alltrim(string2)+string3 ↵
 ?string ↵
 Anticlockwise

Foxpro Tables 30

 str(number) This function converts a number into a string. Type:

 a=10+10+10+10 ↵
 ?a ↵
 40

 a='10'+'10'+'10'+'10' ↵
 ?a ↵
 10101010

In a=10+10+10+10, the four 10’s are real numbers but those in a
=’10’+’10’+’10’+’10’ are strings. Although they look exactly the same in
appearance, they are represented with different machine codes in the computer.
Now type:

 word='text' ↵
 number=1 ↵
 ?word+number ↵

A warning message appears which reads: “Operator/operand mismatch.” Now
type:

 ?word+str(number) ↵
 text 1

This time word and number can be joined together but there are 9 spaces between
them. To eliminate these spaces, put str(number) inside alltrim(string):

 ?word+alltrim(str(number)) ↵
 text1

 for variable = n to x…endfor This command creates a loop between for
variable = n to x and endfor. The initial value of the variable is n and is increased
by 1 until its value is x. Statements in between can be carried out x – n+ 1 times.
Suppose we want to calculate 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, enter the
following in the command window, be sure not to press Enter at the end of each
statement but use the down key on the keyboard to move to a new line:

 a=0
 for i=1 to 10
 a=a+i
 ?a

Foxpro Tables 31

 endfor

then press the left button of the mouse and drag the mouse from a = 0 to endfor
to completely highlight the five lines of statements and then press Enter, the
result is displayed on the main screen. Initially a is assigned the value of 0, but in
the third statement it becomes 1 because the initial value of i is 1 and it’s added
to a in the third statement. After the fourth statement is carried out, which outputs
the current value of a to the screen, the computer goes back to the second
statement and increases the value of i by 1, which is now 2, and then goes to the
third statement, after which the value of a becomes 3. The loop continues until i
becomes 10. The result is shown below:

1
3
6
10
15
21
28
36
45
55

 Now we’ll write a program multifield.prg to create a multiple field table
called multifield. The table has 85 fields. The first field is called tokens holding
number of word tokens with a width of 8 digits. The next four fields are mv, sdv,
intervl and intervu; they are all numeric fields holding 12 digits with 4 decimal
places. These fields are respectively for mean vocabulary growth, the standard
deviation of the 80 sets of vocabulary growth, the lower bound of the 95%
confidence interval of the vocabulary growth and the upper bound of the 95%
confidence interval of the vocabulary growth. The rest are 80 numeric fields for
the vocabulary growth of each of the 80 sets of samples; their width is 6, holding
only integers. We name them v1, v2, v3…v80. Now enter the following in the
command window:

 set default to d:\fox\practice ↵
 modify command multifield ↵

The program editor opens. Enter the following in it (be sure not to enter the line
numbers):

1. fields1=''&&there is no space between the two single quotes
2. for i=1 to 80
3. fields1=fields1+'v'+alltrim(str(i))+' n(6),' &¬e the comma
4. endfor

Foxpro Tables 32

5. fields1=left(fields1,rat(',',fields1)-1)
6. fields2='(tokens n(8),mv n(12,4),'+'sdv n(12,4),'+'intervl

n(12,4),'+'intervu n(12,4),'+fields1+')'
7. create table multifield &fields2
8. browse

Statement 1 initializes the variable fields1. Statements 2—4 create a loop, in
which statement 3 is carried out 80 times. When i = 1, fields1 is given the string
literal v1 n(6),, when i = 2, fields1 becomes v1 n(6),v2 n(6),, and when i = 80,
fields1 contains v1 n(6), v2 n(6), v3 n(6), v4 n(6)…v80 n(6),. Statement 5 cuts the
comma after v80 n(6). In statement 6, the variable fields2 is assigned (mv
n(12,4),sdv n(12,4),intervl n(12,4),intervu n(12,4), v1 n(6)…v80(6)). Statement 7
creates the table multifield by using the macro operator &. Now save the program
in d:\fox\practice as multifield.prg and run it by clicking on the red exclamation
mark on the menu bar. multifield with 85 fields is created instantly.

2.3 Foxpro Table Work Areas

Foxpro has 32,767 work areas in which to open tables. When we first create a
table or use a table without specifying its work area, Foxpro puts it in work area
1 by default. If we create five tables, Foxpro automatically assigns them to work
areas 1, 2, 3, 4 and 5 in order of the creation sequence. We can’t keep five tables
open at the same time in one work area. When a table is opened in one work area,
a previously opened table in this area is automatically closed. So to open a new
table but keep a previously opened table open, we can select a new work area for
the new table. The command to select a work area for a table is:

 select workareanumber

The following function is for checking in which area a table is open:

 select()

Now we’ll create five tables and practice selecting work areas for them. Type the
following in the command window:

 creat table test1(word c(4)) ↵
 creat table test2(word c(4)) ↵
 creat table test3(word c(4)) ↵
 creat table test4(word c(4)) ↵
 creat table test5(word c(4)) ↵

Foxpro Tables 33

Then type:

 browse ↵
 ?select() ↵
 5

test5 is the fifth table created so it’s given work area 5.
 Now enter the following:

 select 1 ↵
 browse ↵
 select 2 ↵
 browse ↵
 select 3↵
 browse ↵
 select 4 ↵
 browse ↵

test1, test2, test3, test4 appear one after another. This means they are open in
work areas 1, 2, 3, and 4 assigned automatically by Foxpro, and we can access
them by selecting the work area they are in. Now let’s assign different work areas
to these tables and open them in these areas. Type:

 close data ↵
 select 15 ↵
 use test1 ↵
 select 16 ↵
 use test2 ↵
 select 17 ↵
 use test3 ↵
 select 18 ↵
 use test4 ↵
 select 19 ↵
 use test5 ↵

The five tables are now all open in the work areas just assigned to them. Type:

 select 18 ↵
 browse ↵

test4 appears on the screen.

Foxpro Tables 34

2.4 Data Input and Output in Tables

2.4.1 Data input

There are three ways to input data to a Foxpro table. They are manual input,
input from another table and input from a text file.
1. Manual input. For new tables we can use either the commands append or
insert to input data manually. Now open table1 you have created (in
d:\fox\practice) and enter either append ↵ or insert ↵ in the command window；a
data input box appears, as shown in Figure 2.3. The field names are on the left of
the first row. Click on the highlighted part of the word field and start inputting
data. After completing entering data in a field, press Enter and the cursor
automatically moves to the next field. Now enter the following in the highlighted
area: study ↵, 24 ↵, 3 ↵, 5 ↵, the cursor moves all the way down to the field
context. Type He is in a brown study. After completing data input, either press
Esc or click on the × sign on the upper right corner of the data input box. To view
the table, type browse ↵.
2. Input from a table. In actual practice, the manual input mode is rarely used
because it’s too slow. Data are either automatically appended from an existing
table or from a text file. The command for appending data from another table is:

 append from tablename [fieldnames] [for condition]

To append the contents of a table to another table, the two tables must have fields
of the same name for the same data type. For example, suppose tablea has three
fields word, freq, wlength, with the first field holding character data and the rest
numeric data, and tableb has four fields word, frequency, range, wlength, with
the first field holding character data and the rest numeric data, only the contents
of the fields word, wlength can be appended to tablea from tableb. If we want to
append all the contents of wordlist (in d:\fox\table3) to table1, open table1,
modify the structure of table1 and change length back to wlength, and then type
in the command window:

 append from d:\fox\table3\wordlist ↵
 browse ↵

table1 appears fully loaded with all the contents of wordlist except the memo
field, which table1 doesn’t have. The command to physically remove all the
contents of a table is:

 zap The command zap physically deletes everything in a table, and should
be used with great care. Now empty table1 for further use by typing:

Foxpro Tables 35

Figure 2.3 Data input box for manual input

 zap ↵

If we want to append only the data in the word and freq fields of wordlist, type:

 append from d:\fox\table3\wordlist fields word,freq ↵
 browse ↵

only the contents in the word and freq fields of wordlist are appended to table1.

We can specify what data to append. Suppose we want to append only words
with length between 3 and 7 letters with frequency higher than 20, zap table1
again and type:

append from d:\fox\table3\wordlist for wlength>=3 and wlength<=7 and
freq>20 ↵
browse ↵

To append only words whose first letter is B, type:

 append from d:\fox\table3\wordlist for word='B' ↵
 browse ↵

Foxpro Tables 36

To append words with the letter clusters scl, type:

 append from d:\fox\table3\wordlist for 'scl'$word ↵
 browse ↵

 recno() This function measures the position of a record in a table. Move
the record pointer (the little black arrow on the left edge of a record) to the
second row in table1 then type:

 ?recno() ↵

2 appears on the screen. To append words between the 50th record and 150th
record (inclusive) in wordlist, type:

append from d:\fox\table3\wordlist for recno()>=50 and recno()<=150 ↵
 browse ↵

101 words are appended from wordlist between the 50th record and 150th record.

 reccount() This function measures the number of records of a table. Type:

use d:\fox\table3\wordlist ↵
?reccount() ↵
23926

3. Input from text files. The following is the command for appending data from a
text file to a table:

 append from filename | [sdf] [delimited with |[tab] [blank] [character]|] |
[fieldnames] [for condition]

To use this command, data to be inputted must be arranged in columns. The sdf
option is used when the columns are separated with spaces, and the width of the
columns is the same as those in the table. Look at the following data from
appendsdf.txt in d:\fox\texts. The first column contains words, the second
frequency, the third range, and the last word length:

A 25897 500 1
A.m. 9 7 4
Aback 1 1 5
Abandon 62 51 7
Abandonment 9 9 11
Abate 2 2 5

Foxpro Tables 37

Abbey 24 13 5
Abbot 10 3 5
Abbreviate 2 2 10
Abbreviation 6 3 12
Abdicate 2 2 8
Abdomen 1 1 7
Abdominal 1 1 9
Aberrant 2 2 8
Aberration 3 3 10
Abet 1 1 4
Abeyance 2 2 8
Abhorrence 1 1 10
Abhorrent 2 2 9
Abhor 1 1 6
Abide 12 12 5
Ability 116 87 7
Abject 4 4 6
Abjure 1 1 6
Ablaze 1 1 6
Able 258 181 4
Ablest 1 1 6
Ably 1 1 4
Abnormal 2 2 8
Abnormality 2 1 11
Abnormally 2 2 10
Aboard 4 2 6

The width of the four columns is respectively 25, 10, 10, and 6. Now create a
four-field table with field width of 25, 10, 10 and 6 each and name the fields
word, freq, rng and wlength and then type:

 append from d:\fox\texts appendsdf.txt sdf ↵

The data is appended without a hitch. We can also specify the appending
conditions. For example, if we want to append words whose length is greater
than 10, type:

 append from d:\fox\texts\appendsdf.txt sdf for wlength>10 ↵

Only the words longer than ten letters are appended.

Data can also be arranged in columns separated with a single space, a comma
or a tab. Look at the file appedblan.txt in d:\fox\texts:

A 25897 500 1
A.m. 9 7 4

Foxpro Tables 38

Aback 1 1 5
Abandon 62 51 7
Abandonment 9 9 11
Abate 2 2 5
Abbey 24 13 5
Abbot 10 3 5
Abbreviate 2 2 10
Abbreviation 6 3 12
Abdicate 2 2 8
Abdomen 1 1 7
Abdominal 1 1 9
Aberrant 2 2 8
Aberration 3 3 10
Abet 1 1 4
Abeyance 2 2 8
Abhorrence 1 1 10
Abhorrent 2 2 9
Abhor 1 1 6
Abide 12 12 5
Ability 116 87 7
Abject 4 4 6
Abjure 1 1 6
Ablaze 1 1 6
Able 258 181 4
Ablest 1 1 6
Ably 1 1 4
Abnormal 2 2 8
Abnormality 2 1 11
Abnormally 2 2 10
Aboard 4 2 6

Each row contains a word, its frequency, range and length, separated by a space.
For such data, we can use the delimited with blank option. Now zap the table you
just created for appending data from appendsdf.txt, and type:

 append from d:\fox\texts\appendblan.txt delimited with blank ↵

The contents of appendblan.txt are appended to the table. We can specify the
fields to which data are appended and under what conditions. If we wish to
append data to the word field and the range field under the condition that the
range is between 4 and 10, type:

append from d:\fox\texts\appendblan.txt delimited with blank fields
word,rng for rng>4 and rng<10 ↵

Foxpro Tables 39

Only three records satisfying the condition are appended to the word field and
range field. If instead of a single space, the data in each row are separated by a
single comma or a tab, the delimited with blank part of the above command
should be changed to delimited with ‘,’ or delimited with tab.

 append memo fieldname from filename [overwrite] This command
appends the contents of a text file to a memo field cell of the current record. The
overwrite option replaces the old contents with the new ones. Without overwrite,
this command adds new contents to the old contents. Now use
d:\fox\table3\wordlist, move the record pointer to the second record and type:

 append memo note from d:\fox\texts\appendsdf.txt ↵

The cell marker memo now is turned to Memo, suggesting this cell is no longer
empty. Click on the cell and the contents just appended are displayed.
 In actual language processing we rarely have such ready data for analysis.
Most probably we have only raw texts with millions of words from which to get
useful data. To do this, we must first tokenize the raw text, breaking it apart into
words arranged in a single column before putting them in Foxpro tables for
further processing. To do this, we need a new set of commands and functions.

 insert blank This command inserts a blank record right after the current
record.

 append blank This command appends a blank record at the bottom of a
table.

 filetostr('filename') This function puts the contents of a text file to a string
variable. For example, if we want to put the contents of the file shorttext.txt in
d:\fox\texts to a variable called textinput, type:

 textinput=filetostr('d:\fox\texts\shorttext.txt') ↵

To check whether textinput is loaded with the contents of shorttext.txt, type:

 ?textinput ↵

The contents are displayed on the screen. Don’t try to do this to long text files
because it would take the computer quite a while to display it. But if such does
happen, press Esc to halt it.

 strtofile(stringname, 'filename') This function does the reverse. It puts the
contents stored in a string variable to a text file. If we want to put the contents of

Foxpro Tables 40

textinput to a file called temp.txt in d:\fox\practice, type:

 strtofile(textinput, 'd:\fox\practice\temp.txt') ↵

To check whether there is such a file, type:

 modify file d:\fox\practice\temp.txt ↵

strtofile(stringname, 'filename') is not additive. That is, the contents, if there is
any, of the target text file are replaced by the contents stored in the variable. To
make it additive, add ,.t. after filename, that is: strtofile (stringname,
'filename',.t.). Now type:

 strtofile(textinput, 'd:\fox\practice\temp.txt',.t.) ↵
 modify file d:\fox\practice\temp.txt ↵

The contents of textinput are added to the contents of temp.txt, instead of
replacing it.

 chr(n) This function is very useful in string manipulation in Foxpro. It
returns one of the 256 ASCII characters depending on the value of n, which
ranges from 0 to 255. Figure 2.4 lists 126 ASCII characters and their
corresponding decimal numbers. Some of the characters are invisible. For
example, 7 represents the bell sound, 8 back space, 9 the tab key, 13 carriage
return, 32 space etc. chr(13) is the most important in tokenizing a text and
therefore must be learned by heart. Now type:

 ?chr(65) ↵
 A

 ?chr(97) ↵
 A

 ?chr(35) ↵
 #

 ?chr(56) ↵
 8

If we type chr(7) ↵ we can hear a beep if the computer has a speaker. Now enter
the following:

Foxpro Tables 41

? 'The following are not letters: ' + chr(33) +chr(34)+ chr(35)+ chr(36) +
chr(37)+chr(38)+chr(39)+chr(40)+chr(41)+chr(42)+chr(43)+chr(34)+chr(45
)+chr(46)+chr(47) ↵

 The following are not letters: !”#$%&'()*+"-./

Figure 2.4 The ASCII character table with their decimal numeric values

 strtran(string,characters1,characters2) This function replaces characters1
with characters2 within string. Type the following:

 phrase='potato:chips' ↵
 letter1='i' ↵
 letter2='a' ↵
 punctuation=': ' ↵
 ?strtran(phrase,letter1,letter2) ↵
 potato:chaps

 ?strtran(phrase,punctuation, '') ↵&&no space between the quotes
 Potatochips

 letter1='ta' ↵
 nothing=’’ ↵ &&no space between the quotes
 ?strtran(phrase,letter1,nothing) ↵
 poto:chips

Now we’ll use the functions we’ve just learned to break shorttext.txt into
individual words and remove the punctuation marks and tabs. Type the following
statements one by one in the command window:

Foxpro Tables 42

 textinput=filetostr('d:\fox\texts\shorttext.txt') ↵
textinput=strtran(textinput,chr(9),'') ↵ && no space between the two quotes

 textinput=strtran(textinput,chr(44),'') ↵
 textinput=strtran(textinput,chr(46),''’) ↵
 textinput=strtran(textinput,chr(32),chr(13)) ↵
 strtofile(textinput,’d:\fox\practice\temp.txt’) ↵

The first statement put the contents of shorttext.txt to textinput, while the second,
third, fourth statements replace chr(9), chr(44) and chr(46) respectively
representing tabs, commas and full stops, with nothing (represented by two single
quotes without any space between them). The fifth statement replaces chr(32)
representing white space with chr(13), the carriage return. We can also use
‘ ‘ (two single quotes with a white space in between) instead of chr(32). chr(13)
serves as a tokenizer, breaking the text into individual words arranged in one
column. The last statement puts the tokenized contents of textinput to temp.txt.
The contents of temp.txt are as follows:

Cat
cat
on
the
mat
A
word
is
characterized
by
the
company
it
keeps

chrtran(string,characters1,characters2) This function replaces characters-

1 in string with characters2. Unlike the strtran() function, characters in
characters1 don’t have to be contiguous in string. The first character of
character1 in string is replaced by the first character of character2, the second
character of character1 is replaced by the second character in character2 etc. If
character2 has more characters than character1, then those characters of
characters2 whose position exceeds that of the last character of characters1 are
ignored. And if characters1 has more characters than characters2, those
characters of characters1 in string whose position exceeds that of the last
character in characters2 are replaced with nothing. Type:

Foxpro Tables 43

?chrtran(‘abaout‘,'a','what') ↵
wbwout

?strtran('abaout', 'a', 'what') ↵
whatbwhatout

?chrtran('abaout', 'au', 'what') ↵
wbwoht

?strtran('abaout','au','what') ↵
abaout

?chrtran('abaout', 'au', 'w') ↵
wbwot

?strtran('abaout','au','w') ↵
abaout

nothing=''↵ &&no space between the quotes
?chrtran('abaout', “a123*&%.(/$?!'”, nothing) ↵
bout

?strtran('abaout', 'a123*&%.(/$?!',nothing) ↵
abaout

?chrtran('a12b3a*o&u%t.(/$?!','123*&%.(/$?!',nothing) ↵
abaout

?strtr('a12b3a*o&u%t.(/$?!','123*&%.(/$?!',nothing) ↵
a12b3a*o&u%t.(/$?!

 len(string) This function measures the length of a string in number of
characters. Type:

 ?len('linguistics') ↵
 11

Blanks within a string or on either side of it are also counted by the function.
Now type:

?len(' Foxpro for quantitative linguistics ') ↵ &&there is a space on either
side of the string

Foxpro Tables 44

 37

 nothing='' ↵ &&there is no space between the quotes
 ?len(nothing) ↵
 0

To measure the length between the first F and the last s inclusive, use alltrim()
nested inside len():

?len(alltrim(' Foxpro for quantitative linguistics ')) ↵ &&there is a space on
either side

 35

Now let’s tokenize alice.txt in d:\fox\texts with the commands and functions
we’ve just learned. First we’ll create a table called alicetoken in d:\fox\practice.
It has three fields, the field word for storing words, freq for word frequency and
wlength for word length:

 create table d:\fox\practice\alicetoken (word c(30),freq n(4),wlength n(4)) ↵

Then enter the following statements in the command window:

 set default to d:\fox\practice ↵
 carriage=chr(13) ↵
 spaces=chr(32) ↵
 textinput=filetostr('d:\fox\texts\alice.txt') ↵
 textinput=strtran(textinput,spaces,carriage) ↵
 strtofile(textinput, 'temp.txt') ↵
 append from temp.txt sdf ↵
 browse ↵

In statements 3 and 4, chr(13) and chr(32) are respectively assigned the more
self-explanatory variable carriage and spaces. The text is tokenized by statement
5 and appended to alicetoken, but the entire frequency field, word length field
and part of the word field are empty, and some words have punctuation marks.
The table needs to be further processed.

 delete [all] [for condition] This command is used to delete records from a
table. delete used alone deletes only the current record. Now move the record
pointer to a record in the table you just created and type

 delete ↵

Foxpro Tables 45

the left side of the record is marked by a dark square. Now type:

 delete all ↵

The left edge of the entire table is darkened. The delete command doesn’t
physically remove the deleted records. We can retrieve the deleted records by
issuing the following command:

 recall [all] recall without all retrieves the deleted record where the record
pointer is; with all, all the deleted records are retrieved. Now type:

 recall all ↵

the dark mark on the left edge of the table disappears, and the deleted records are
all retrieved.
 The following command physically removes the records deleted by the delete
command:

 pack

Now type

 delete for recno()<10 ↵
 delete for word='' ↵ &there is a space between the quotes
 pack ↵

The first statement deletes all the records whose record number is smaller than 10.
The second statement deletes records whose word field is empty. However,
statement like this should be used with care. If some words in the word field have
blanks preceding them, they will be deleted. The last statement physically
removes these deleted records from the table and can’t be recalled. So pack
should be used with great care.

 blank [all] [for condition] This command, used without all, replaces the
current record with a blank. Used with all, all the records of a table are replaced
with blanks. We can also specify which record to be replaced with blanks. Now
type:

 blank ↵
 browse ↵

Only one record is blanked. Type:

Foxpro Tables 46

 blank for recno()<20 ↵
 browse ↵

All the records whose record number is smaller than 20 are blanked.

 proper(string) This function capitalizes the first letter of string. Type:

 ?proper('foxpro') ↵
 Foxpro

 lower(string) This function turns the characters of string into lower cases.
Type:

 ?lower('FOXPRO') ↵
 foxpro

 upper(string) This function turns the characters of string into upper cases.
Type:

 ?upper('foxpro') ↵
 FOXPRO

 replace [all] fieldname with | [string] [number] | [for condition] This
command replaces the field of the specified records with a string or a number. To
replace a single record of a field with a string or a number, move the record
pointer to the record and then issue the command. If we want to replace the in
alicetoken with THE, move the record pointer to the record where the is and type
in the command window:

 replace word with 'THE' ↵

To replace the entire frequency field with 1, type:

 replace all freq with 1 ↵

 sort to tablename on fieldname [descending] This command sorts a field
fieldname of an open table and puts the result to another table tablename.
Without descending, the field is sorted in ascending order. Now remove the
contents of alicetoken using zap, and reload it with all the words of alice.txt,
remove all the empty records, sort the word field of alicetoken in descending
order and output the result to a table called alicedesc by typing:

Foxpro Tables 47

 sort to alicedesc on word descending ↵
 use alicedesc ↵
 browse ↵

 index on fieldname tag fieldname [descending] This command is used to
sort a field of an open table either in ascending order (without descending) or
descending order (with descending). However, unlike the sort command, this
command doesn’t change the original record number of a record. Now move the
record pointer to the second record of alicedesc and type in the command
window:

 ?recno() ↵
 2

Now open the table alicetoken and type:

 index on word tag word desc ↵
 brow ↵

The words are sorted in descending order. Now move the record pointer to the
second record of the table and type in the command window:

 ? recno() ↵
 719

We can use this command to sort a field not only at the leftmost position of the
field, but also anywhere else. In d:\fox\table3 there is a table called filename
holding imagined file names in the field fname, sorted in the following order:
BOA1.TXT, BOA10.TXT, BOA11.TXT,…BOA2.TXT, BOA20.TXT, BOA21 etc.
This is because the numbers here 1, 10, 11, 2, 20, 21and so on after BOA are
actually characters, so BOA1.TXT is followed by BOA10.TXT instead of
BOA2.TXT. Now we’ll rearrange them so that they will be arranged as
BOA1.TXT, BOA2.TXT, BOA3.TXT…BOA10.TXT and so on. Open the table and
type in the command window:

 index on left(alltr(fname),len(alltr(fname))-6) tag fname ↵

The file names are now sorted in the way desired, i.e., BOA1.TXT, BOA2.TXT,
BOA3.TXT etc. This is because file names like BOA1.TXT are eight characters in
length, while that of BOA10.TXT, BOA11.TXT etc are nine characters in length.
left(alltr(fname),len(alltr(fname))-6) gets BO from BOA1.TXT to BOA9.TXT, but
BOA from BOA10.TXT upwards. When sorting in ascending order, BO precedes

Foxpro Tables 48

BOA. Therefore BOA1.TXT…BOA9.TXT precede BOA10.TXT, BOA11.TXT and
so on.

 delete tag all This command makes an indexed table un-indexed.

 total to tablename on fieldname This command combines identical
character records and is often used to calculate word frequency. For this
command to work, the index command must be issued first.
 Now we’ll write a program for making a wordlist of alice.txt in d:\fox\texts.
We‘ll call the program alice.prg. Type:

 set default to d:\fox\practice ↵
 modify command alice ↵

and then enter the following statements in the now empty alice.prg without the
line number.

1. close data
2. create table aliceword (word c(30), freq n(8), wlength n(3))
3. nothing='' &&there is no space between the quotes
4. carriage=chr(13)
5. spaces=chr(32)
6. textinput=filetostr('d:\fox\texts\alice.txt')
7. textinput=strtran(textinput, '-',spaces)
8. textinput=strtran(textinput,spaces,carriage)
9. strtofile(textinput, 'temp.txt')
10. append from temp.txt sdf
11. replace all word with chrtran(word, ',.`[?]_ ”!:;()*',nothing)
12. replace all word with strtran(word, “'”,nothing)&&there is a single

quote between the double quotes
13. replace all word with proper(word)
14. dele all for word=spaces
15. pack
16. replace all freq with 1
17. index on word tag word
18. total to temp on word
19. zap
20. append from temp
21. replace all wlength with len(alltrim(word))
22. browse

In this program, statement 1 closes any open tables. Statement 6 puts the contents
of alice.txt to the variable textinput. Statement 7 replaces “-“ with a white space

Foxpro Tables 49

in words like what-do-you call-it. Statement 8 performs tokenization, replacing
all white spaces in the text with carriage returns so that all the words of the text
are arranged in a column as shown below:

Alice
was
beginning
to
get
very
tired
of
sitting
by
her
sister
on
the
bank,
and
of
having
nothing
to
do:

Statement 9 put the tokenized text stored in textinput to a temporary file temp.txt,
which is then appended to the table aliceword. Statements 11, 12 and 13
respectively remove punctuation marks and non-letter symbols and capitalize the
first letters of the words in the word field for calculating the frequency of words
such as cat and Cat. Statements 14—15 remove records whose word fields are
empty, and statement 17 sorts the word field. Statement 18 combines identical
records and calculates word frequency, and the result is stored in a temporary
table called temp. Statement 19 empties the old contents of aliceword, and
statement 20 appends the contents of temp to aliceword. Statement 21 measures
word length; alltrim(word) is nested inside the len() function to remove the
trailing blanks after them.
 In the table there are words like Dont, Doesnt, Youve, Youll, Theres etc; this is
caused by the removal of the apostrophe ‘ by statement 12 in the program. Their
original forms are Don’t, Doesn’t, You’ve, You’ll, There’s, etc. If we want to
separate each of the contracted forms into two words, i.e. Don’t into Do and not,
the program should be modified. We leave this task to the reader as an exercise.

Foxpro Tables 50

2.4.2 Data output

The contents of a table can be outputted to another table or a text file. There are
several commands for data output. Before we look at these commands and their
use, open the table aliceword if it’s closed.

 copy to tablename [fieldnames] [for condition] [foxplus] This command
copies the contents of an open table to another table. If we want to copy the
contents of aliceword to another table called temp, type:

 copy to temp ↵

 We can specify the records or fields to copy. Suppose we want to copy to
temp only words beginning with C with frequency between 5 and 10 and word
length between 3 and 7, type:

 copy to temp for word='C' and freq>=5 and freq<=10 and wlength >=3 and

wlength<=7 ↵

If the foxplus option is used, the new table can be read by the statistical package
SPSS for WINDOWS. Type:

copy to temp field freq,wlength foxplus ↵

The new table temp can be opened by SPSS for statistical analysis.

 copy to filename [fieldnames] | [sdf] [delimited with |[blank] [tab]
[character]|] | [for condition] This command copies the contents of a table to a
text file. If we want to output the contents of aliceword to a text file called
aliceword.txt and keep the field width unchanged in the text file, type:

 copy to aliceword.txt sdf ↵

The contents of the entire table are outputted to aliceword.txt. To view the file,
type:

 modify file aliceword.txt ↵

Be sure to close the file after viewing. If we want to output words whose
frequency is greater than 20, type:

 copy to aliceword.txt field word,freq for freq>20 sdf ↵
 modify file aliceword.txt ↵

Foxpro Tables 51

Now try the following:

 copy to aliceword.txt delimited with tab ↵
 modify file aliceword.txt ↵

character in the character option in this command can be any single printable
character on the keyboard. Now try the following:

 copy to aliceword.txt delimited with '*' ↵
 modify file aliceword.txt ↵ &&be sure to close the text after viewing
 copy to aliceword.txt delimited with “'”' ↵
 modify file aliceword.txt ↵
 copy to aliceword.txt delimited with '/' ↵
 modify file aliceword.txt ↵

 list [fieldname] [for condition] [to filename] [noconsole] [off] This
command sends the contents of specified fields to the screen or a file. If we type:

 list ↵

the contents of the entire table are sent to the screen with record numbers. To stop
the listing, press Esc. If we want to send the contents of aliceword to a text file
called temp.txt without record numbers, type:

 list to temp.txt noconsole off ↵

noconsole prevents outputting the contents to the screen, and off tells the
computer not to output the record numbers. The above statement keeps the field
names, as well as the field width, in the text file. We can specify conditions on
data outputting. If we want to output only words whose record number is smaller
than 20, type:

 list to temp.txt field word for recno()<20 noconsole off ↵

 display [all] [fieldnames] [for condition] [to filename] [noconsole] [off]
This command is the same as the list command except that to output the contents
of a table to a text file or to the screen, all has to be used, otherwise only one
record is outputted. In addition, when outputting data to the screen or to a text,
data is displayed one screen at a time and the display pauses between screens. A
key has to be pressed for the display to continue. But used with noconsole, all the
contents are displayed without pause. Now type:

Foxpro Tables 52

 display all to temp.txt for freq>=100 noconsole off ↵

 copy memo fieldname to filename [additive] This command copies the
contents of a memo field of the current record to a text file. The default action of
this command is overwrite, that is, the new contents replace the existing contents
of the text file. To add new contents to the text without removing the old ones,
the additive option should be used. Now open wordlist in d:\fox\table3, move the
record pointer to a record with a loaded memo field and then type in the
command window:

 copy memo note to temp.txt ↵

The contents of the memo field of the current record are outputted to a text file
called temp.txt.

2.5 Application

2.5.1 Lexical comparison

Now let’s use some of the commands and functions we have learned to write
practical language processing programs. We’ll make a lexical study on Alice’s
Adventures in Wonderland and Through the Looking-glass (alice.txt and lglass.txt
in d:\fox\texts). We’ll calculate their respective vocabulary size, word frequency,
word length, lexical similarity and difference and then store the results both in
tables and text files. We’ll write three programs: awordlist.prg, lwordlist.prg and
compare.prg. awordlist.prg and lwordlist.prg make a frequencied wordlist
respectively for alice.txt and lglass.txt, while compare.prg compares the two
wordlists for lexical overlap between them.

awordlist.prg
1. set default to d:\fox\practice
2. set safety off
3. close data
4. create table awordlist (word c(25),freq n(10),wlength n(4))
5. nothing=’’
6. spaces=chr(32)
7. carriage=chr(13)
8. textinput=filetostr('d:\fox\texts\alice.txt')
9. textinput=strtran(textinput,'-',spaces)
10. textinput=strtran(textinput,spaces,carriage)
11. strtofile(textinput,'temp.txt')
12. append from temp.txt sdf

Foxpro Tables 53

13. replace all word with chrtran(word, ',.`[?]_”!:;()*',nothing)
14. replace all word with strtran(word,''''',nothing)&&there is a single quote

between the double quotes
15. replace all word with prop(word)
16. replace all freq with 1
17. index on word tag word
18. total to temp on word
19. zap
20. append from temp
21. replace all wlength with len(alltrim(word))
22. delete all for len(alltrim(word))=0 &&this removes empty records
23. pack
24. copy to awordlist.txt sdf

lwordlist.prg
1. set default to d:\fox\practice
2. set safety off
3. close data
4. create table lwordlist (word c(25),freq n(10),wlength n(4))
5. nothing=’’
6. spaces=chr(32)
7. carriage=chr(13)
8. textinput=filetostr('d:\fox\texts\lglass.txt')
9. textinput=strtran(textinput,'-',spaces)
10. textinput=strtran(textinput,spaces,carriage)
11. strtofile(textinput,'temp.txt')
12. append from temp.txt sdf
13. replace all word with chrtran(word, ',.`[?]_''!:;()*',nothing)
14. replace all word with strtran(word,”'”,nothing)&&there is a single quote

between the double quotes
15. replace all word with prop(word)
16. replace all freq with 1
17. index on word tag word
18. total to temp on word
19. zap
20. append from temp
21. replace all wlength with len(alltrim(word))
22. delete all for len(alltrim(word))=0 &&this removes empty records and -
23. pack
24. copy to lwordlist.txt sdf

compare.prg
1. set default to d:\fox\practice

Foxpro Tables 54

2. set safety off
3. close data
4. create table aliceglass (word c(25),freq n(12,5))
5. append from awordlist
6. replace all freq with freq*100000
7. append from lwordlist
8. index on word tag word
9. total to temp on word
10. zap
11. append from temp
12. copy to shareword for mod(freq,100000)>0 and freq>100000
13. copy to aliceonly for mod(freq,100000)=0
14. copy to lglassonly for freq<100000
15. copy to lglassonly.txt for freq<100000
16. use aliceonly
17. replace all freq with freq/100000
18. copy to aliceonly.txt sdf
19. use shareword
20. replace all freq with freq/100000
21. copy to shareword.txt sdf

awordlist.prg and lwordlist.prg are very similar to alice.prg. They tokenize
alice.txt and lglass.txt, put the tokenized text into a table, remove punctuation
marks and non-alphabetic characters and calculate word frequency and word
length. compare.prg picks out words that are unique to alice.txt and lglass.txt and
those shared between them. In compare.prg, statement 4 creates a table called
aliceglass for holding the contents of awordlist and lwordlist. Statement 5
appends words and their frequency from awordlist. The word frequency from
awordlist is subsequently multiplied with 100,000 in statement 6 for lexical
comparison; the multiplicand must be multiples of ten and should be at least 10
times larger than the highest frequency of the two wordlists to be compared.
Statements 7 to 11 append the contents of lwordlist, combine identical words, i.e.
words shared between the two wordlists, and then re-calculate their frequency.
For example, a now has a frequency of 620,000,759 (620 × 100000+795=
620000759). Statements 12 picks out words shared between awordlist and
lwordlist and put them to shareword. The logic behind this is that the frequency
of words occurring both in awordlist and lwordlist now are larger than 100,000
and have remainders if divided by 100,000. Statements 13 and 14 put words
unique to awordlist and lwordlist to aliceonly and lglassonly respectively.
Statement 17 returns word frequencies in aliceonly to their original values, while
statement 20 separates the frequency of the shared words between awordlist and
lwordlist with a decimal point. Those on the left of the decimal point are the word
frequency of awordlist; those on the right are the word frequency of lwordlist.

Foxpro Tables 55

2.5.2 Processing multiple texts in a table

Next we’ll write a program called multitext.prg for extracting lexical information
from multiple texts in a multi-field Foxpro table, such as word frequency, word
length (in letters), and word range (in how many text chunks a word occurs).
Word range is a very important concept in quantitative linguistics. For example,
in selecting words to be taught in a language course, word range, together with
word frequency, must be taken into consideration; word range is also referred to
as word cotextuality, and is related to Köhler´s self-regulating cycle hypothesis
that high cotextuality results in high frequency.
 In d:\fox\texts there are 48 text chunks from alice.txt. We’ll create a table
called multitext holding the vocabulary of all the 48 text chunks, the range of
these words and their frequencies in the individual text chunks and the length of
these words.

multitext.prg
1. set default to d:\fox\practice
2. set safe off
3. close data
4. nothing=''
5. tabs=chr(9)
6. carriage=chr(13)
7. spaces=chr(32)
8. fields1=nothing &&initialize the variable fieldnaname or an error

message will result in statement 10
9. for i=1 to 48
10. fields1=fields1+'freq'+alltrim(str(i))+' n(6),'
11. endfor
12. fields2='(word c(25),'+'totalfreq n(6),'+'rng n(6),'+ fields1+'wlength

n(4))'
13. create table multitext &fields2
14. recordnumber=0
15. for i=1 to 48
16. texts='d:\fox\texts\text'+alltr(str(i))+'.txt'
17. frequency='freq'+alltrim(str(i))
18. textinput=filetostr('&texts')
19. textinput=strtran(textinput,'-',spaces)
20. textinput=strtran(textinput,tabs,nothing)
21. textinput=strtran(textinput,spaces,carriage)
22. strtofile(textinput,'temp.txt')
23. append from temp.txt sdf
24. replace all &frequency with 1 for recno()>recordnumber
25. recordnumber =reccount()

Foxpro Tables 56

26. endfor
27. replace all word with chrtran(word, ',.`[?]_”!:;()*',nothing)
28. replace all word with strtran(word,”'”,nothing)&&there is a single quote

between the double quotes
29. delete all for word=spaces
30. pack
31. replace all word with prop(word)
32. replace all totalfreq with 1
33. index on word tag word
34. total to temp on word
35. zap
36. append from temp
37. replace all wlength with len(alltrim(word))
38. fields1=nothing
39. for i=1 to 48
40. fields1=

fields1+'round('+'freq'+alltr(str(i))+'/('+'freq'+alltr(str(i))+'+1),0)+'
41. endfor
42. fields1=left(fields1,len(fields1)-1)
43. replace all rng with &fields1

In this program, statements 9 to 13 create a 52-field table multitext. Statement 14
creates a position marker recordnumber whose initial value is set to 0.
Statements 15 to 26 create a loop, in which the 48 text chunks are tokenized and
loaded one by one into the table multitext. In the loop, when i = 1, the variable
texts is assigned the string literal d:\fox\texts\text1.txt and the variable frequency
the string literal freq1, which is a field name holding the word frequency of
text1.txt. Statement 18 then puts the contents of text1.txt to textinput. Statements
19—21 remove hyphens, tabs and tokenize the contents of textinput, which are
outputted to temp.txt in statement 22. Statement 23 appends the contents of
temp.txt to the table multitext. Statement 24 replaces the frequency field freq1
with 1. Statement 25 assigns the position marker recordnumber the number of
records in multitext after loading the tokenized words of text1.txt. If text1.txt has
553 words, then the value of recordnumber is 553. When i = 2 texts is assigned
the string literal d:\fox\texts\text2.txt, and frequency the string literal freq2, and
statement 18 assigns the contents of text2.txt to textinput. Statements 19 to 21
remove hyphens, tabs and tokenize the contents of textinput, which again are
outputted to temp.txt, with its old contents overwritten. The new contents of
temp.txt are subsequently appended to multitext too. Statement 24 replaces the
frequency field freq2 with 1 starting from record number 554 upwards. Statement
25 assigns the position marker recordnumber the number of records in multitext
after loading the tokenized words of text2.txt. When i reaches 48, all the words of
the 48 text chunks are loaded into multitext. Statements 27—30 remove

Foxpro Tables 57

punctuation marks, non-alphabetic characters and empty records. Statements
31—37 turn the first letters of the words into upper case, combine identical
words, calculate their frequency and measure word length. Statements 38—43
calculate the range of the words. That is, in how many of the 48 text chunks these
words occur. Statement 38 empties the variable fields1 for new contents. In
calculating range, all non-zero frequencies in freq1 to freq48 are regarded as 1. If
a word occurs only in two of the texts, say 45 times in text1.txt and once in
text2.txt, then its range can be obtained with round(45/(45+1),0)+
round(1/(1+1),0) + round(0/(0+1),0) +round(0/(0+1),0) +…= 2， because
round(45/(45+1),0) equals 1, so does round(1/(1+1),0), while round (0/(0+1),0)
equals 0. Statements 39—43 create a loop, at the end of which fieldname holds
the string literal “round(freq1/(freq1+1),0)+ round(freq2 / (freq2+1),0) +
round(freq3/(freq3+1),0) +… round (freq44/(freq48+1),0) +”. Statement 42
removes the trailing plus sign “+” in fields1 and the last statement replaces the
range field with the range of all the words using the macro operator &. When the
program has run, put the range field in descending order by typing:

 index on rng tag rng descending ↵

To view the results, type:

 browse ↵

Figure 2.5 is part of multitext. With this table, we can extract a lot of useful
lexical information on all the 48 text chunks. For example, if we want to output
the words shared between text23.txt and text26.txt to a table called text23_26,
type:

 copy to text23_26 for freq23>0 and freq26>0 fields word, freq23,freq26 ↵

To output to a table called text1_2 words that text1.txt does not have but which
occur in text2.txt, type:

 copy to text1_2 for freq1=0 and freq2>0 fields word, freq1,freq2 ↵

Statements like the above are particularly useful in compiling word lists for
individual lessons of a language course book. To output words that appear in all
the 48 text chunks without their record numbers, type:

list off word,rng for rng=48 ↵

Foxpro Tables 58

Figure 2.5 Wordlist of the 48 text chunks

2.5.3 Vocabulary growth

Vocabulary size is a function of text length. As the latter increases, so does the
former, but the relationship is non-linear. The slope of vocabulary growth curve
gradually decreases as text length increases but will never flattens out. According
to Baayen, after sampling 90,000,000 words from the BNC, the vocabulary
growth curve was still in the LNRE (large number of rare events) zone. The
relationship between vocabulary size and text length is extremely important in
the study of vocabulary richness. Wimmer and Altmann list the main approaches
to the study of vocabulary richness by Yule, Guiraud, Muller, Dugast, Brunet,
Herdan, Kuraszkiewicz, Ejiri and Smith, Tuldava, Köhler, Galle etc, all of which
depend on the relationship between vocabulary size and text length. Now we’ll
write a program to compute vocabulary growth of 100,000 words of texts at an
interval of 2,000 words. To do this, 50 texts chunks were randomly sampled from
the written text section of the BNC. The lemmatized wordlists of each of the 50
texts are in d:\fox\table2 in the form of Foxpro tables with names from bncwlem1
to bncwlem50. Apart from examining how vocabulary size changes as the
number of word tokens increases, we’ll also look at the range of these words, i.e.
in how many texts these words occur. We want the program to do two things: a.
making a wordlist of the 50 tables put together, with word frequency, word range

Foxpro Tables 59

and word length; b. computing vocabulary growth as the tables are put together
one by one and the number of new words a table contributes to the vocabulary
growth. The program is as follows:

vocgrowth.prg
1. set default to d:\fox\practice
2. close data
3. set safe off
4. set talk off
5. clear
6. creat table wordlist(word c(25),freq n(8),rng n(5),wlength n(4))
7. creat table vocincrease(tokens n(10),textvoc n(8),vocgrowth n(8),

newvoc n(5))
8. vocnumber1=0
9. vocnumber2=0
10. tokennumber=0
11. select 1
12. for i=1 to 50
13. tablename='d:\fox\table2\bncwlem'+alltrim(str(i))
14. append from &tablename
15. tokennumber=tokennumber+2000
16. vocnumber2=reccount()
17. textvocsize=vocnumber2-vocnumber1
18. replace all rng with 1 for rng=0
19. index on word tag word
20. total to temp on word
21. zap
22. append from temp
23. vocnumber2=reccount()
24. vocincrease=vocnumber2-vocnumber1
25. vocnumber1=vocnumber2
26. select 2
27. append blank
28. replace tokens with tokennumber
29. replace textvoc with textvocsize
30. replace vocgrowth with vocnumber2
31. replace newvoc with vocincrease
32. select 1
33. endfor
34. sele 1
35. replace all wlength with len(alltr(word))

In this program, statements 6—7 create two tables: wordlist and vocgrowth. The

Foxpro Tables 60

former holds words from the 50 lemmatized BNC wordlist tables and word
frequency, range and length in fields word, freq, rng and wlength respectively;
the latter is for cumulative number of tokens, vocabulary sizes of individual
tables, vocabulary growth at 2,000-word intervals, and number of new words a
table contributes to the vocabulary growth in the fields tokens, textvoc,
vocgrowth and newvoc respectively. The two tables are respectively in work area
1 and work area 2. Statements 8—10 assign zero to vocnumber1, vocnumber2
and tokennumber, which measure the vocabulary size before a new table is added
to wordlist, the vocabulary size after a new table is appended, and the cumulative
number of tokens, which increases by 2,000. Statement 11 accesses wordlist, and
statements 12 to 33 create a loop, in which the 50 tables are loaded one by one
into wordlist and processed. textvocsize stores the vocabulary size of a table
loaded into vocgrowth, and vocincrease stores the number of new words a table
produces for the vocabulary growth. When i = 1, bncwlem1 is loaded;
tokennumber is now 2,000, and vocnumber2, textvocsize, and vocincrease are all
the same at this stage. Statement 18 assigns 1 to rng for all the words appended
from bncwlem1. In statement 25 vocnumber1 is given the value of vocnumber2,
which is the current number of records of wordlist after bncwlem1 is loaded.
Statement 26 selects work area 2 and accesses vocgrowth. Statement 27 creates a
blank record in vocgrowth for storing cumulative number of tokens, vocabulary
sizes of individual tables, vocabulary growth and the new vocabulary a table
contributes to the vocabulary growth, which is done by statements 28—31.
Statement 34 accesses wordlist for the next round of processing. When i = 2
bncwlem2 is loaded, and statement 15 increases tokennumber by 2,000, which is
now 4,000. Statement 16 assigns vocnumber2 the current number of records of
wordlist. Statement 17 measures the vocabulary size of bncwlem2 by subtracting
vocnumber1 from vocnumber2; vocnumber1 now holds the number of records of
wordlist before bncwlem2 is loaded (assigned in statement 25 in the previous
round). Statement 18 assigns 1 to rng for all the newly appended words, and
statements 19—22 combine identical words of bncwlem1 and bncwlem2 together,
measuring their range at the same time. Statement 23 gets the number of records
in wordlist after identical words are combined. Statement 24 calculates the
number of new words bncwlem2 produces by subtracting vocnumber1, the
number of records of wordlist before bncwlem2 is loaded, from vocnumber2.
Statement 25 gives the current value of vocnumber2 to vocnumber1, and
statements 27 to 31 input the newly obtained data to vocgrowth in work area 2,
after which the program switches to work area 1 and ready for the next round.
The above processes are repeated until all the 50 tables are appended. In
statement 35 the program switches to work area 1 and measures word length of
all the words in wordlist, thus ending the program.

Foxpro Tables 61

Exercises

1. Create a two-field table and append all the words and their frequency from
words.txt in d:\fox\texts.

2. Use the command for automatic table modification to modify the table you
have just created, renaming the two fields, changing their width and adding a
new numeric field with a width of 12 and 4 decimal places.

3. Open the table wordlist in d:\fox\table3 and output every other word to a new
table.

4. Use wordlist and output words beginning with Ex to a table, and then output
word ending in ed to another table.

5. The Zipf rank of a wordlist is obtained by assigning ranks to words arranged in
decreasing frequency. The word with the highest frequency is given a Zipf rank
of 1, the second highest frequency a Zipf rank of 2 and so on until the end of the
wordlist is reached. The h-point is the point in a wordlist where the Zipf rank
equals the corresponding word frequency. For example, if a word has a Zipf rank
of 10 and its frequency is also 10, then the h-point is 10. The h-point is useful for
studying vocabulary richness and text themes. Create a three-field table, one for
words, another for word frequency and the third for Zipf ranks of the words.
Append words and frequency from wordlist in d:\fox\table3 and assign Zipf ranks
to the words and locate the h-point.

6. Write a program to create a two-field table, one field for the names of all the
48 texts (text1.txt—text48.txt) in d:\fox\texts, the other for the contents of these
text chunks, then input the text names and their contents in their respective field.

7. In quantitative linguistics and natural language processing, we often use the
concept of binomial distribution. The equation for calculating the binomial
distribution is:

)()1(),;(rnr pp
r
n

pnrb −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,

 where
!)!(

!
rrn

n
r
n

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ . n is the number of trials, and r the number of successes

out of n trials; p is the probability of success in any trial. If n = 6, r = 3, p = 0.5,
write a program to calculate b(r; n, p).

Foxpro Tables 62

8. Check the fit of the following models to the vocabulary growth in the table
vocincrease created with vocgrowth.prg. V: vocabulary size, N: text length.
(1) βα)(ln NV = (Brunet), a = 0.003315956, β = 6.017229305.
(2) βαNV = (Herdan, Heaps), a = 65.73656, β = 0.4291.
(3) NaV = (Guiraud, Sánchez & Cantos), a = 24.706408821.

(4)
))((ln

)ln(ln
NZZ
NNZZV

−+
−

=
α

 (Orlov). Z = 132000，a =1.48369912.

9. Modify vocgrowth.prg so that it can calculate the word frequency, word range
and word length of the words of all of the 48 text chunks of alice.txt in
d:\fox\texts, as well as the word frequency of the individual texts. Output the
words that are unique to text44.txt to a new table.

 10. Use wordlist in d:\fox\table3, copy it to d:\fox\practice\test and do the
following using the command window:
a. sort the word field on the second letter from the left;
b. sort the word field on the last letter of the words.

3 Number Crunching and Pattern Matching
in Foxpro Tables

3.1 More Functions and Commands for Math Operation in Tables

In 1.2.5 we looked at some functions for math operations. Now we’ll learn some
other functions and commands for math operations.

 count to variable for condition This command counts the number of
records of a table satisfying the specified conditions and stores the result to
variable. If we want to count the number of words with length 3 in wordlist in
d:\fox\table3 and store the result in a variable called length3, type:

 count to wordnumber for wlength=3 ↵
 ?wordnumber↵
 826

To count the number of words longer than 7 letters occurring more than 5 times
and store the result in wordnumber, type:

 count to wordnumber for freq>5 and wlength>7↵
 ? wordnumber ↵
 2959

 sum [fieldname to variable] [for condition] This command sums numeric
data of a field to a variable, with an optional condition. For example, to get the
number of word tokens whose corresponding word types occur 15 times and
store the result in wordnumber, type:

 sum freq to wordnumber for freq=15 ↵
 ?wordnumber ↵
 2430

If only sum is used, all the numeric fields are summed and the result displayed on
the screen.

 sum ↵
 freq rng wlength

903441.00 292256.0 184551.00

 average [fieldname to variable] [for condition] This command calculates
the arithmetic mean of a numeric field and stores the result to variable, with an

Number Crunching and Pattern Matching in Foxpro Tables 64

optional condition. To calculate the mean word length of words that occur less
than 3 times and store the result in mlength, type:

 average wlength to mlength for freq<3 ↵
 ?mlength ↵
 8.17

If only average is used, all the numeric fields are averaged and the result
displayed on the screen.

average ↵
freq rng wlength
37.76 12.22 7.71

 min(n1,n2,…nx) This function picks out the smallest number among the
numbers within the brackets. The number of values to be compared can not
exceed 26. Now type:

? min(1000034,5612992) ↵
1000034

?min(34,56,12,99,0.1,-2) ↵
-2

The following results in an error message because the number of values to be
compared exceeds 26:

?min(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27) ↵
Too many arguments.

 max(n1,n2,…nx) This function selects the largest number among the
numbers within the brackets. The number of values within the brackets can’t
exceed 26, too. Type:

?max(90078,436779000) ↵
436779000

?max(0.0067,0.000089714) ↵
0.0067

 calculate [avg(fieldname)] [, min(fieldname)] [, max(fieldname)] [,

Number Crunching and Pattern Matching in Foxpro Tables 65

std(fieldname)] [, var(fieldname)] [, cnt(fieldname)] [, sum(fieldname)] [to
variable1, variable2…] [for condition] This command calculates the average,
minimal value, maximal value, standard deviation, variance, number of records,
and sum of a numeric field and stores the results to their corresponding variables.
Except for std(fieldnam) and var(fieldname), this command combines some of
the math functions we have covered in the previous chapter. min(fieldname) and
max(fieldname) respectively pick out the smallest and the largest value of a
numeric field, no matter how many cells there are in the field. Now type:

calculate std(wlength),var(wlength),cnt(wlength) to s1,s2,s3 for wlength>2
and wlength<7 ↵
STD(wlength) VAR(wlength) CNT(wlength)
1.00 0.99 8365

?s1 ↵
1

?s2 ↵
0.99

?s3 ↵
8365

To get the minimal and maximal word length of words with frequency between
400 and 700, type:

calculate min(wlength),max(wlength) for freq>400 and freq<700 ↵
MIN(wlength) MAX(wlength)
2 10

3.2 Moving the Record Pointer and Creating Conditional Statements

During data processing in a table, we often need to move the record pointer to a
specified position; sometimes we need to set conditions for the execution or
non-execution of a statement or a series of statements in a program. The
following commands are for such purposes.

 go | [top] [bottom] [n] | go top moves the record pointer to the top of a
table, go bottom moves the record pointer to the bottom of a table, while go n
moves the record pointer to the nth record of the table. For example, go 178
moves the record pointer to the 178th record of a table. Now open wordlist in
d:\fox\table3 and type the following in the command window:

Number Crunching and Pattern Matching in Foxpro Tables 66

 go 24 ↵
 brow ↵
 go bottom ↵
 brow ↵
 go top ↵
 brow ↵

 skip | [n] [-n] | This command moves the record pointer n steps forward or
backward in a table. skip -5 moves the record pointer 5 steps backward from its
current position, while skip 10 moves the record pointer 10 steps forward. skip
used alone moves the record pointer one step forward. Now type in the command
window:

 skip 23 ↵
 brow ↵
 skip -10 ↵
 brow ↵
 skip ↵
 brow ↵

 bof() This function tests whether the record pointer is over the top of a
table. Type:

 go 11 ↵
 ?bof()↵
 .F.

 go top ↵
 ?bof() ↵
 .F.

 skip -1 ↵
 ?bof() ↵
 .T.

 eof() This function tests whether the record pointer has passed the bottom
of a table. Type:

 go 58 ↵
 ?eof() ↵
 .F.

Number Crunching and Pattern Matching in Foxpro Tables 67

 go bottom ↵
 ?eof() ↵
 .F. ↵

 skip ↵
 ?eof() ↵
 .T.

 do while condition…enddo This command creates a loop, and as long as
the specified condition is met, statements between do while condition and enddo
are executed repeatedly. In processing data within a table, this command is often
used with eof().

 exit This command is used for ending a loop.

 if condition…[else condition]…endif This command is used to execute a
statement if a condition is met.

 In d:\fox\table3 there is a table spwordlist containing the vocabulary of 500
2000-word samples from the spoken text section of the BNC. Suppose we want
to output the words in spwordlist whose range is 500 to the screen, we can use
the following little program to do it:

doif.prg
1. set default to d:\fox\practice
2. use d:\fox\table3\spwordlist
3. do while not eof()
4. if rng=500
5. ?word
6. endif
7. skip
8. enddo

Statement 3 and statement 8 create a loop, in which, as long as the record pointer
is still within the table, the statements between them are executed again and again,
and when the record pointer comes to a record whose range field is 500,
statement 5 is executed and the result is shown on the screen as follows:

A
And
Be
Can
Do
Get

Number Crunching and Pattern Matching in Foxpro Tables 68

Go
Have
In
It
Know
No
Not
Of
Oh
On
That
The
Then
There
To
Well
What
Will
With
Yeah
You

 Next, we’ll see how to use exit and if condition…else condition…endif in
programs. In natural language processing, we often need to separate a text or a
corpus into N-grams, i.e., bigrams, trigrams and so on. bigram.prg separates
alice.txt in d:\fox\texts into bigrams.

bigram.prg
1. set defa to d:\fox\practice
2. set safe off
3. set talk off
4. clear
5. close data
6. creat cursor wordtable (word c(25))
7. creat table bigram (bgram c(40),freq n(6))
8. nothing=''
9. carriage=chr(13)
10. spaces=chr(32)
11. twowords=nothing
12. textinput=fileto('d:\fox\texts\alice.txt')
13. textinput=chrtran(textinput,'`*()_',spaces)
14. textinput =alltr(strtr(textinput,spaces,carriage))
15. strtof(textinput,'temp.txt')
16. sele 1

Number Crunching and Pattern Matching in Foxpro Tables 69

17. appe from temp.txt sdf for word<>spaces
18. go top
19. do while not eof()
20. for i=1 to 2
21. position=recn()
22. twowords=twowords+alltr(word)+spaces
23. skip
24. endfo
25. twowords=twowords+carriage
26. if position<recc()
27. go position
28. else
29. exit
30. endif
31. enddo
32. strtof(twowords,'temp.txt')
33. sele 2
34. appe from temp.txt sdf
35. replace all freq with 1
36. inde on bgram tag bgram
37. total to temp on bgram
38. zap
39. appe from temp
40. copy to bigram.txt sdf
41. modi file bigram.txt

In this program, statement 6 creates a temporary table called wordtable in work
area 1. Tables of this kind will be automatically deleted after the program has run.
It holds the tokenized alice.txt. Statement 11 initializes the variable twowords by
assigning it nothing; this variable is for storing bigrams. Statements 12—15
respectively put the contents of alice.txt to textinput, replace `*,()_ with a white
space, tokenize alice.txt and output the tokenized alice.txt to temp.txt. Statement
16 accesses the temporary table wordtable, which is now open in work area 1,
and appends the tokenized alice.txt from temp.txt minus the white spaces.
Statement 18 moves the record pointer to the top of the temporary table
wordtable. Statements 19—31 create a loop that ends when the end of wordtable
is reached. In this loop, words are taken one by one from wordtable to form
bigrams, which are stored in the variable twowords. Let’s see how this is done in
the program. The following are the first 24 records of wordtable.

ALICE'S
ADVENTURES
IN
WONDERLAND

Number Crunching and Pattern Matching in Foxpro Tables 70

CHAPTER
I
Down
the
Rabbit-Hole
Alice
was
beginning
to
get
very
tired
of
sitting
by
her
sister
on
the
bank,
…

Statements 20—24 create a two-round loop within the do…enddo loop. Initially,
when i = 1 the record pointer is at the first record, and statement 21 assigns 1 to
position. In statement 22 twowords is given the first record ALICE'S plus a white
space, and statement 23 moves the record pointer to the next record and the
program goes back to statement 20 to increase i by one, which is now 2. position
now becomes 2 in statement 21. In statement 22 twowords is given the second
record ADVENTURES plus a white space. Now it contains the first bigram
ALICE’S ADVENTURES. Statement 23 moves the record pointer to the third
record. Since i is now 2, the programs proceeds to statement 25, which puts a
carriage return to the end of twowords so that the second bigram will start on a
new line. The second bigram should be ADVENTURES IN, which is to be formed
by the second record and the third record of wordtable; but the record pointer is
now at the third record, so statement 27 moves the record pointer back to the
second record, under the condition set by statement 26 that position is smaller
than the total number of records in wordtable. After statement 27 is carried out,
the program returns to statement 20 and repeats the above process until position
equals the number of records in wordtable, i.e. all the words in wordtable have
been turned into bigrams. Statement 32 puts the bigrams stored in twowords to
temp.txt. Statement 33 accesses the table bigram now open in work area2, and
statements 34—40 append the bigrams to it, compute their frequency and copy
the frequencied bigrams to a text file bigram.txt.

Number Crunching and Pattern Matching in Foxpro Tables 71

3.3 Math Operation in Foxpro Tables

In quantitative linguistics we often have to do very complicated computation to
get certain linguistic measurements. These tasks can be easily and efficiently
done in Foxpro tables. We’ll look at several such examples in this section.

3.3.1 Creation of frequency spectrum

Frequency spectrum is a table listing word frequency classes of a text and the
number of words belonging to each of these classes. For example, in alice.txt, the
frequency spectrum for words occurring once to 5 times is:
 m V(m,N)
 1 1133
 2 401
 3 233
 4 151
 5 95
(see aliceword created in 2.4.1). Here m is the frequency class and V(m,N) the
number of words belonging to a class. In alice.txt, there are 1,133 words
occurring once, 401 words occurring twice, 233 word occurring three times, 151
words occurring 4 times, and 95 words occurring 5 times.
 Now we’ll write a program making a frequency spectrum for lwordlist (in
d:\fox\practice created in 2.5.1), which is a wordlist for Through the
Looking-glass (lglass.txt, in d:\fox\texts), and put the result in a table called
spectrum and in a text file spectrum.txt as well.

spectrum.prg
1. set defa to d:\fox\practice
2. close data
3. set safe off
4. create table spectrum(m n(8),vmn n(8))
5. for i=1 to 1589 && the highest frequency in lwordlist
6. use lwordlist
7. count to freqclass for freq=i
8. if freqclass>0
9. use spectrum
10. append blank
11. replace m with i
12. replace vmn with freqclass
13. endif
14. endfor
15. use spectrum
16. copy to spectrum.txt sdf

Number Crunching and Pattern Matching in Foxpro Tables 72

Statement 4 creates a two-field table spectrum, m holding frequency, and vmn the
number of words with frequency of m. Statements 5—14 create a loop, within
which the number of words in lwordlist with frequency m is counted and the
result stored in freqclass. In lwordlist, the highest frequency is 1,589, but the
second highest frequency is 907, not 1,588, and the third highest is 765.
Statements 8—13 avoid 0 to be put to spectrum. When freqlass is 0, the program
goes back to statement 5 and i is increased by 1. Statements 9—12 are carried out
if i corresponds to a frequency in freq field of lwordlist, in which case freqlass is
greater than 0. The following is the frequency spectrum of Through the
Looking-glass.

Table 3.1 Frequency spectrum of Through the Looking-glass

m V(m,N) m V(m,N) m V(m,N) m V(m,N)
1 1168
2 458
3 262
4 158
5 123
6 78
7 65
8 47
9 31
10 25
11 23
12 36
13 20
14 19
15 26
16 13
17 16
18 7
19 12
20 11
21 9
22 10
23 6
24 3
25 3
26 6
27 4
28 6
29 3

30 3
31 3
32 3
33 5
34 3
35 3
36 7
37 4
38 3
39 1
40 3
41 3
43 2
45 1
46 2
48 2
49 2
50 3
51 1
52 1
53 4
54 4
55 1
56 4
57 3
58 1
59 2
60 2
62 2

63 3
64 2
65 2
66 2
67 2
68 2
69 1
70 2
71 3
74 2
75 2
76 1
78 1
79 1
80 1
81 1
85 1
86 1
87 1
88 1
90 2
94 1
95 1
97 1
98 1
103 1
111 1
116 1
117 2

123 1
124 1
125 1
126 3
135 1
137 1
142 1
146 1
147 1
148 1
153 1
157 1
179 1
194 1
199 1
203 1
204 1
216 1
221 1
229 1
249 1
270 1
314 2
354 1
409 1
434 1
472 1
489 1
506 1

Number Crunching and Pattern Matching in Foxpro Tables 73

521 2
562 1

732 1
765 1

907 1
1589 1

3.3.2 The distribution of hapax legomena

Hapaxes are a very important word category and several linguistic measures rely
on the number of hapaxes. For example, the vocabulary growth rate P(N), the
number of hapaxes V(1,N) and the size of a text have the following relationship:

N
NVNP),1()(=

Generally, hapaxes account for about 40% of the vocabulary of a text. Now we’ll
write a program called hapax.prg to compute P(N) of the 48 text chunks from
alice.txt in d:\fox\texts, the ratio between the number of hapaxes and vocabulary
size in each of the texts, the mean word length of hapaxes, and the standard
deviation of the vocabulary sizes and the number of hapaxes of the individual
texts. Information on the word frequencies of the 48 text chunks is in multitext
(d:\fox\practice) created in 2.5.2.

hapax.prg
1. set default to d:\fox\practice
2. set safe off
3. set talk off
4. close data
5. clear
6. use multitext
7. create table texthapax (texts c(10),vocsize n(6,2),hapsize n(6,2), hvratio

n(6,2),pn n(6,2),mhlength n(6,2))
8. for i=1 to 48
9. select 1 &&access multitex open in work area 1
10. wordfield='text'+alltr(str(i))
11. freqfield='freq'+alltr(str(i))
12. count to hapaxnumber for &freqfield=1
13. count to vocnumber for &freqfield>0
14. sum &freqfield to tokennumber
15. ratio=hapaxnumber/vocnumber
16. average wlength to meanhaplength for &freqfield=1
17. sele 2&&access texthapax open in work area 2
18. append blank
19. replace texts with wordfield
20. replace vocsize with vocnumber

Number Crunching and Pattern Matching in Foxpro Tables 74

21. replace hapsize with hapaxnumber
22. replace hvratio with ratio
23. replace pn with hapaxnumber/tokennumber
24. repl mhlength with meanhaplength
25. endfor
26. set talk on
27. calculate avg(vocsize),avg(hapsize),avg(hvratio),avg(pn),

avg(mhlength)
28. calculate min(vocsize), min(hapsize), min(hvratio), min(pn),

min(mhlength)
29. calculate max(vocsize),max(hapsize), max(hvratio), max(pn),

max(mhlength)
30. calculate std(vocsize),std(hapsize),std(mhlength)

Although this program has 30 statements, it’s very easy to understand. Statement
3 sets talk off to suppress screen display. Statement 7 creates a 6-field table
texthapax, holding text names, vocabulary sizes, number of hapaxes,
hapax/vocabulary ratio, vocabulary growth rates and average length of hapaxes
of the individual texts. Statements 8—25 create a loop, in which the distribution
of vocabulary sizes and the number of hapaxes, hapax/vocabulary ratio,
vocabulary growth rates and average hapax length of the individual texts are
computed and appended to texthapax. Statements 26 sets talk on for displaying
related information on the screen. Statements 27—30 compute related averages,
standard deviation, minimum values, maximum values, etc and output the results
to the screen.

3.3.3 Yule’s K

Yule’s K is a lexical constant proposed by Yule, who claims it to be independent
of text length. Yule’s K can be used as a measure for vocabulary richness and for
author identification. To compute K of a text, we should turn the text into a
wordlist with word frequency, make a frequency spectrum, and then compute K.
The formula for computing K is:

2

2),(
10000

N

NNmVm
K m∑ −
= ,

where m is the frequency classes, and V(m,N) is the number of words whose
frequency is m, and N the number of words a text has. Now we’ll write a program
called yulek.prg to compute K of Through the Looking-glass (lglass.txt in
d:\fox\texts) using its frequency spectrum we just made in 3.3.1. There are 29,633
words in lglass.txt, and the number of records in spectrum is 122, which means

Number Crunching and Pattern Matching in Foxpro Tables 75

there are 122 different frequency classes in lglass.txt.

yulek.prg
1. set default to d:\fox\practice
2. set safe off
3. close data
4. cumu=0
5. use spectrum
6. do while not eof()
7. cumu=cumu+m**2*vmn
8. skip
9. enddo
10. ?10000*((cumu-29633)/29633**2)

Yule’s K is 90.7566.

3.3.4 Per word entropy of English

Entropy measures the average uncertainty of a single random variable and is
expressed as the following:

)(log)(2 xpxpH
Xx
∑
∈

−= .

It was first proposed by Shannon, who computed the per-letter entropy of English
to be 1.3 bits. Here p(x) is the probability of the occurrence of x. Another concept
is perplexity, which is obtained with:

 Perplexity = 2H.

Both entropy and perplexity are widely used in natural language processing. Now
we’ll write a program called entropy to compute the per-word entropy and
perplexity of wordlist in d:\fox\table3

entropy.prg
1. set defa to d:\fox\practice
2. close data
3. set safe off
4. set decimal to 16
5. create table entropytable(word c(25),freq n(8),prob n(18,16),logfreq

n(20,16),entropy n(18,16))
6. append from d:\fox\table3\wordlist field word,freq

Number Crunching and Pattern Matching in Foxpro Tables 76

7. sum freq to tokennumber
8. replace all prob with freq/tokennumber
9. replace all logfreq with 1/(log10(2)/log10(prob))
10. replace all entropy with prob*logfreq
11. sum entropy to entropysum
12. append blank
13. replace word with 'ENTROPY:'
14. replace entropy with -entropysum
15. append blank
16. replace word with 'PERPLEXITY:'
17. replace entropy with 2**-entropysum
18. brow

Statement 5 creates a five-field table holding words, their frequency, the
probabilities of these words, the log probabilities to the base 2 and p(x)log2p(x).
Statement 7 gets the total number of tokens. Statement 9 computes log2p(x),
statement 10 p(x)log2p(x), and statement 11)(log)(2 xpxp

Xx
∑
∈

. Statements 14 and

17 respectively give H and perplexity, which are respectively 9.6449 and
800.5864.

3.3.5 Word length in syllables

Altmann proposes that the longer a language construct, the shorter its
components. Mathematically,

y = Ax-b,

where x is a language construct, y its components, and A and b are parameters.
We’ll check whether this relationship holds between word length x measured in
number of syllables and mean syllable length y in number of letters in wordlist
(in d:\fox\table3), for which A = 4.1484 and b = 0.30896. We need a program that
first calculates word length in syllables and then checks the fit of 4.1484x-0.30896
to the observed mean syllable length of wordlist.
 A word has the following syllabic structure: (nV)nCnV[nC(nV)]. nV is a
vowel or a vowel cluster and nC is a consonant or a consonant cluster. The
elements within the round brackets are optional and those in the square brackets
can be reduplicated. Generally, the number of syllables of a word is actually the
number of nV’s in it. However, there are exceptions and the following are some
of them:
1. a consonant plus e at the end of a word does not form a syllable, e.g., live,

like, etc, except in a few words such as simile, recipe, etc ;

Number Crunching and Pattern Matching in Foxpro Tables 77

2. ble, ple, sm at the end of a word constitute a syllable, e.g., people, syllable,
isolationism, etc;

3. vowel clusters such as ea, io, ia, uo can constitute either one syllable, or two
syllables, e.g., peasant, creation, ratio, biology, quote, duo, India, special,
etc.

For the sake of simplicity, ia will be regarded as forming two syllables while ea,
io, uo and other vowel clusters as forming one syllable.
 Before writing the program, we’ll look at a function for measuring the
occurrences of a character or characters in a string.

 occurs(string1,string2) This function measures the occurrence of string1 in
string2. Now type:

 ?occurs(wh','what is that?') ↵
 1

 ?occurs('t', 'what is that? ') ↵
 3

syllable.prg
1. set defa to d:\fox\practice
2. set safe off
3. set talk off
4. clear
5. close data
6. create table sylength(sylnumber n(6),wordnum n(5),avsylength n(6,4),

prediclen n(6,4))
7. create table syllable(word c(25),freq n(8),wlength n(6),syllables c(25),

sylnumber n(5))
8. select 2&&access syllable
9. append from d:\fox\table3\wordlist fiel word,freq
10. replace all syllables with word
11. replace all wlength with len(alltr(word))
12. replace all syllables with strtr(syllables,'ee ','*')
13. replace all syllables with strtr(syllables,'sm ','*')
14. replace all syllables with strtr(syllables,'ple ','pl*')
15. replace all syllables with strtr(syllables,'ble ','bl*')
16. replace all syllables with strtr(syllables,'iu','**')
17. replace all syllables with strtr(syllables,'ia','**')
18. replace all syllables with strtr(syllables,'ion','*')
19. replace all syllables with strtr(syllables,'io','**')
20. replace all syllables with strtr(syllables,'ey ','*')
21. replace all syllables with strtr(syllables,'ay ','*')

Number Crunching and Pattern Matching in Foxpro Tables 78

22. replace all syllables with strtr(syllables,'gue ','g/')
23. replace all syllables with strtr(syllables,'e ','#')&¬e the white space

after e
24. replace all syllables with strtr(syllables,'y','/')
25. replace all syllables with strtr(syllables,'ere','/')
26. replace all syllables with strtr(syllables,'ively ','/vl/')
27. replace all syllables with strtr(lower(syllables),'a','/')
28. replace all syllables with strtr(lower(syllables),'e','/')
29. replace all syllables with strtr(lower(syllables),'i','/')
30. replace all syllables with strtr(lower(syllables),'o','/')
31. replace all syllables with strtr(lower(syllables),'u','/')
32. replace all syllables with strtr(syllables,'//','/')
33. replace all syllables with strtr(syllables,'//','/')
34. replace all sylnumber with occurs('/', syllables)+occurs('*', syllables)
35. replace all sylnumber with 1 for sylnumber =0
36. for i=1 to 10
37. calcul sum(wlength/sylnumber), cnt(wlength) to sumlength,

wordnumber for sylnumber=i
38. if wordnumber>0
39. select 1
40. append blank
41. replace sylnumber with i
42. replace wordnum with wordnumber
43. replace avsylength with sumlength/wordnumber
44. endif
45. selec 2
46. endfor
47. select 1
48. replace all prediclen with 4.1484*sylnumber**-0.30896
49. brow

In this program, statement 6 creates sylength in work area 1, whose fields
sylnumber, wordnum, avslength and prediclen respectively hold number of
syllables in words, number of words that have 1 to 10 syllables, average syllable
length (in letters) and predicted average syllable length. Statement 7 creates
syllable in work area 2 with fields word, freq, wlength, syllables, sylnumber
respectively holding words, word frequency, word length in letters, word
separated into syllables and number of syllables in words. Statement 9 appends
words and word frequency from wordlist. Statement 10 puts all the words in the
word field into the now empty field syllables for syllable separation. Statements
12—21 replace certain graphemes with *, which stands for a syllable (in this
program, both * and / are used as a syllable marker). For example, ion normally
forms only one syllable, so it's replaced with a single *, while ia often forms two

Number Crunching and Pattern Matching in Foxpro Tables 79

syllable so it’s replaced with **. Statement 23 replaces e at the end of a word
with # meaning it should not be counted as a syllable formed with the preceding
consonant. Statements 27—33 mark vowels for syllable separation. Statements
32—33 combine contiguous vowel markers into one. The two identical
statements are for words such as beauty, which becomes b///t/ after statements 24,
27, 28 and 31. But beauty has only two syllables, so statement 32 turns b///t/ to
b//t/, and statement 33 turns b//t/ to b/t/, meaning it has two syllables. Statement
34 gets the number of syllables in a word by counting the number of / and * in it.
Statements 36 to 46 create a loop. Statement 36 sets the initial value of i to 1 and
its maximum value to 10 since the longest word length in syllables in wordlist is
10. Statement 37 sums syllable length (in letters) of words that have i syllables
and count the number of words with i syllables. In case certain word syllabic
length can’t be measured, such as Dr., statement 35 ensures that such words have
1 syllable. Statement 48 computes the fit of 4.1484x-0.30896 to the observed
average syllable length (in letters). Figure 3.1 is part of syllable. The result is
fairly accurate. However, in linguistic computing, especially in tasks such as
syllable counting, parts of speech tagging etc, it’s almost impossible to achieve a
100% accuracy, so quite often manual checking is needed to weed out possible
errors. The reader can check the entire table for errors and see if it’s possible to
improve the program to avoid such errors. Figure 3.2 is syllable; the table
respectively stores in sylnumber, wordnum, avsylength and prediclen the number
of syllables from 1 to 10, the observed average syllable length in letters and the
predicted values. The fit is good. However, the average length of syllables for the
word with 9 syllables is suspicious because it’s 2.5556. Checking syllable reveals
that the word is pancreaticoduodenectomy, which has 23 letters and 11 syllables
instead of 9. This is caused by taking ea and uo as forming one syllable each
instead of two. Its actual length in syllables is 2.09. Correcting the mistake, the fit
is much better.

Number Crunching and Pattern Matching in Foxpro Tables 80

Figure 3.1 Part of the table syllable

Figure 3.2 The uncorrected sylength

3.4 Commands and Functions for Pattern Matching

 locate for condition This command locates a record satisfying the specified

Number Crunching and Pattern Matching in Foxpro Tables 81

condition in a table. Now open wordlist in d:\fox\table3. To locate a word with
length 16, type:

 locate for wlength=16 ↵
 ?word ↵
 Aquaintanceship

Type brow ↵ and we can see the record pointer is at the record containing
Aquaintaceship.

 continue This command continues the action of the locate command. Now
type:

 continue ↵
 ?word ↵
 Administratively

 brow ↵

The record pointer is at the record containing Administratively.

 like(string1, string2) This function checks whether string1 and string2 are
identical. Type:

 ?like('Fox', 'Foxpro') ↵
 .F.

 ?like('Fox', 'fox') ↵
 .F.

 ?like('Fox', 'Fox') ↵
 .T.

We can use wild cards in string1. ? stands for any single character and * for any
number of characters. Now type:

 ?like('Fox*', 'Foxpro') ↵
 .T.

 ?like('Foxp?? ', '’Foxpro') ↵
 .T.

Number Crunching and Pattern Matching in Foxpro Tables 82

 ?like('F?x*', 'Foxpro') ↵
 .T.

We can use this function with the locate command for pattern matching. If we
want to know whether there are words in wordlist that have the letter cluster scl,
type:

locate for like('*scl*',lower(word)) ↵
?word ↵
Disclaim

locate for like('Scl*', word) ↵
?word ↵
Sclerosant

The like() function can be used with other commands, too. The following lists all
the words in wordlist that have the letter cluster scl:

 list all for like('*scl*',lower(word)) ↵

All words that have the letter cluster are displayed on the screen.

 scan for condition…endscan This command searches for records
satisfying the specified condition. Unlike the locate command, this command is
much faster and searches for all the records meeting the specified conditions.
Type the following in the command window. Press the down key to start a new
line. After completing entering all the lines, drag the mouse from the first line
down to the last line to highlight them, then press Enter:

 scan for like('A?b*c?',alltr(word))
 ?word
 endscan ↵

The result is as follows:
 Ambiance
 Ambience
 Ambivalence
 Ambulence
If we want to search for words whose length is between 15 and 20 letters
(inclusive) containing ou and ending in ly, and output the words meeting these
conditions to the screen with their length, enter the following in the command
window:

Number Crunching and Pattern Matching in Foxpro Tables 83

 scan for wlength>=15 and wlength<=20 and like('*ou*ly',alltr(word))
 ?word+alltr(str(wlength))
 endscan

Highlight the three statements and then press Enter, the following are shown on
the screen:
 Conscientiously 15
 Contemporaneously 17
 Inconspicuously 15
 Instantaneously 15
 Surreptitiously 15
 Unceremoniously 15

 seek(string) This function searches a table for the specified string. For this
function to work, the table must be indexed. Now copy wordlist to test. Open test
and type the following in the command window:

 seek('Abandon') ↵

A warning message pops up saying the table has no index order set. Now type the
following:

 index on word tag word ↵
 seek('Abandon') ↵
 ?recno() ↵
 10

The seek function has found the word Abandon, which is in record 10.
 Now we’ll write a program separating text1.txt in d:\fox\texts into sentences
and measure the length of these sentences. Before processing a piece of text, we
should first examine it carefully to determine its general linguistic patterns and
exceptions to these patterns. This is called language modelling in natural
language processing. In text1.txt, punctuation marks “.”, “?” and “!” generally
end a sentence except in a few cases where the end of a sentence is marked by
“.)”, “!’” or “?’”. In addition sentences are often broken by carriage returns. So
we should take these characteristics into consideration during programming.

sentlength.prg
1. set default to d:\fox\practice
2. set safety off
3. close data
4. create table sentlen(sent1 c(250),sent2 c(250),sent3 c(250),sent

m(4),slength n(4))

Number Crunching and Pattern Matching in Foxpro Tables 84

5. linebreak=chr(10)
6. carriage=chr(13)
7. spaces=chr(32)
8. textinput=filetostr('d:\fox\texts\text1.txt')
9. textinput=strtr(textinput,carriage+linebreak,spaces)
10. textinput=strtr(textinput,spaces+spaces,carriage)
11. textinput=strtr(textinput, '.)', ').'+carriage)
12. textinput=strtr(textinput,”!'”,” '!”+carriage)
13. textinput=strtr(textinput,”?'”,”'?”+carriage)
14. textinput=strtr(textinput,'.','.'+carriage)
15. textinput=strtr(textinput,'?','?'+carriage)
16. textinput=strtr(textinput,'!','!'+carriage)
17. strtofil(textinput,'temp.txt')
18. append from temp.txt sdf
19. replace all sent1 with alltrim(sent1)
20. delete for sent1=spaces
21. pack
22. replace all sent with alltr(sent1+sent2+sent3)
23. replace all slength with occurs(' ',sent)+1
24. brow

In this program, statement 4 creates a table with 5 fields. The first three fields,
sent1, sent2 and sent3 are for holding sentence fragments. Three fields together
can hold 750 characters, about 130 words, enough for the longest sentence in
text1.txt. sent is a memo field for holding complete sentences and for measuring
sentence length. slength is for sentence length measured in number of words.
Statement 5 assigns chr(10), a line breaking character, to linebreak. This
character is used in combination with chr(13) in text1.txt at the end of each line.
Statements 9 replaces the character combination carriage return plus line breaker
with a white space so that no sentences are broken in the middle by these
characters. Statement 10 converts two or more contiguous spaces into carriage
returns so that chapter and section titles, such as Chapter 1, Down the
Rabbit-Hole, which have more than two white spaces preceding them, are each
placed in a new line again (Statement 9 puts them in one line.). Statements
11—16 separate text1.txt into individual sentences while keeping the punctuation
marks at the end of the sentences. Statements 11—13 replace “.)”, “!’” and “?’”
with “).”, “’!” and “’?” plus a carriage return so that “)” and ”’” won’t be placed
in a new line by statements 13—16. Statement 22 combines sent1, sent2 and
sent3 together. The longest sentence in text1.txt has 107 words, 565 characters.
sent1 holds the first 250 characters (including white spaces) of the long sentence:

(when she thought it over afterwards, it occurred to her that she ought to
have wondered at this, but at the time it all seemed quite natural); but
when the Rabbit actually TOOK A WATCH OUT OF ITS WAISTCOAT-

Number Crunching and Pattern Matching in Foxpro Tables 85

POCKET, and looked at it, and then hurried
sent2 holds the second part of the sentence:

 on, Alice started to her feet, for it flashed across her mind that she had
never before see a rabbit with either a waistcoat-pocket, or a watch to take
out of it, and burning with curiosity, she ran across the field after it, and
fortunately was jus

sent3 holds the remaining:
t in time to see it pop down a large rabbit-hole under the hedge.

Statement 22 combines sent1, sent2 and sent3 together and put the contents to the
memo field sent, which can practically store texts of any length. Statement 23
calculates the length of all the sentences in number of words by counting the
number of spaces within each sentence.

 found() This function checks whether a search is successful or not. Now
open wordlist in d:\fox\table3 and copy it to d:\fox\practice\wordlist. Enter the
following in the command window. Press the down key to begin a new line.
Highlight the two statements by dragging the mouse from the start of the first
statement to the end of the second, and then press Enter:

 locate for word='Abandon'
 ?found()
 .T.

Then try locating a non-word string Axxx, the result is .F.

 select | [*] [fieldnames] | from tablename where condition [order by
fieldname [descending]] having [condition] [| [into table tablename] [to
filename] |] [additive] [noconsole] This command searches for records
meeting the condition in specified fields and outputs the selected records in
specified fields or all the fields, represented by *, to a table , to the screen or to a
text file. If we want to search in wordlist for words whose second letter is d and
which ends in t, with length>6, and output the result in order of descending
frequency to a table called temp, enter in the command window the following
statements:

select word,freq,wlength from wordlist where like('?d*t',alltr(word)) order
by freq descending having wlength>6 into table temp ↵
brow ↵

temp is open with the selected records. To output the above result to a text file
called temp.txt, type:

select word,freq,wlength from wordlist where like('?d*t',alltr(word)) order

Number Crunching and Pattern Matching in Foxpro Tables 86

by freq descending having wlength>6 to temp ↵
modi file temp.txt ↵

The result is outputted to temp.txt. The file extension txt is automatically added.
At the same time it’s also sent to the screen. To suppress the screen display, type:

select word,freq,wlength from wordlist where like('?d*t',alltr(word)) having
wlength>6 to temp noconsole ↵
modi file temp.txt ↵

If additive is used (it must be put before noconsole), then the result is added to
the old contents of temp.txt, instead of overwriting it:

select word,freq,wlength from wordlist where like('?d*t',alltr(word)) having
wlength>6 to temp additive noconsole ↵
modi file temp.txt ↵

To select words with frequency of 20, 30, 40 and output all the fields of the
records satisfying the condition in ascending order, type:

select *from wordlist where freq in (20,30,40) order by freq ↵

 replicate(character, n) This function replicates character n times. If n is
not an integer, it’s rounded down. Type:

 ?replicate('*',5) ↵

 ?replicate('*',5.7) ↵

 ?replicate(' ',25)+'Foxpro' ↵
 Foxpro

The first statement replicates * five times, while the second does the same. The
third replicates a space 25 times and add them to the left of the string Foxpro.
The replicate function is very useful in text formatting. In d:\fox\texts\poem.txt
there is a poem by John Keats arranged in left justification:
 To Autumn
 Season of mists and mellow fruitfulness
 Close bosom-friend of the maturing sun
 Conspiring with him how to load and bless
 With fruit the vines that round the thatch-eaves run;

Number Crunching and Pattern Matching in Foxpro Tables 87

 To bend with apples the mosss'd cottage-trees,
 And fill all fruit with ripeness to the core;
 To swell the gourd, and plump the hazel shells
 With a sweet kernel; to set budding more
 And still more, later flowers for the bees,
 Until they think warm days will never cease,
 For summer has o'er-brimm'd their clammy cells.
 --John Keats--
We’ll write a program to re-arrange it with centre justification. The program is as
follows:

cjust.prg
1. set defa to d:\fox\practice
2. close data
3. set safe off
4. create table poem(lines c(80))
5. spaces=’ ‘
6. append from d:\fox\texts\poem.txt sdf
7. replace all lines with replicate(spaces,80/2-len(alltrim(lines))/2)+ alltrim

(lines)
8. copy to cjustify.txt sdf
9. modify file cjustify.txt

In this program, the centre justification is done by statement 7, which does centre
justification by adding spaces to the left of each line of the poem so that the mid
point of every line is placed at the centre of a line 80 characters long. The result
is as follows:

To Autumn
Season of mists and mellow fruitfulness
Close bosom-friend of the maturing sun

Conspiring with him how to load and bless
With fruit the vines that round the thatch-eaves run;

To bend with apples the mosss'd cottage-trees,
And fill all fruit with ripeness to the core;

To swell the gourd, and plump the hazel shells
With a sweet kernel; to set budding more
And still more, later flowers for the bees,

Until they think warm days will never cease,
For summer has o'er-brimm'd their clammy cells.

--John Keats—

Number Crunching and Pattern Matching in Foxpro Tables 88

3.5 Pattern Matching in Tables

3.5.1 Extraction of lexical bundles

In conversation and written discourse we often see word sequences such as at the
same time, it used to be, for a long time and so on. Biber calls them lexical
bundles and defines lexical bundles as recurring sequences of word forms in
natural discourse. The following are some of the lexical bundles commonly used
in conversation, taken from Longman Grammar of Spoken and Written English:
it's going to be
it's got to be
it must have been
it used to be
it's a bit of
it's a lot of
and it was a
it was a bit
it was in the
it's not too bad
that's going to be
i was in the
but the thing is
the only thing is
some of them are
it's a bit of a
it's a lot of money
it's nothing to do with
that's what I said to

the end of the
the back of the
the middle of the
the other side of
other side of the
the side of the
the top of the
the bottom of the
end of the day
the end of it
the rest of the
the rest of it
that sort of thing
the name of the
most of the time
quite a lot of
or something like that
and things like that
nothing to do with

and the other one
the other day and
the one with the
the last time I
o'clock in the
at the end of
in the middle of
at the back of
on top of the
for a couple of
for the rest of
at the same time
for a long time
by the time I
in the morning and
up in the morning
on the other side
in the first place

These bundles are in bundle.txt in d:\fox\texts. We’ll write a program searching
for these lexical bundles in lglass.txt in d:\fox\texts; if a sentence containing one
of the bundles listed above is found, it’s extracted from the text and put in a text
file. The program is as follows.

bundle.prg
1. set default to d:\fox\practice
2. set safety off
3. close data
4. create table lexbundle(bundlfield c(30),freq n(4))
5. create table sentence(sent1 c(250),sent2 c(250),sent3 c(250),sent m(4))
6. textinput=filetostr('d:\fox\texts\lglass.txt')
7. tabs=chr(9)
8. linebreak=chr(10)
9. carriage=chr(13)

Number Crunching and Pattern Matching in Foxpro Tables 89

10. spaces=chr(32)
11. bundletext=''
12. bundlenumber=0
13. textinput=strtr(textinput,carriage+linebreak,spaces)
14. textinput=strtr(textinput,spaces+spaces,carriage)
15. textinput=strtr(textinput,'.','.'+carriage)
16. textinput=strtr(textinput,'.”','.”'+carriage)
17. textinput=strtr(textinput,'?','?'+carriage)
18. textinput=strtr(textinput,'!','!'+carriage)
19. textinput=strtr(textinput,'!”','!”'+carriage)
20. strtofil(textinput,'temp.txt')
21. select 2
22. append from temp.txt sdf
23. replace all sent1 with alltrim(sent1)
24. delete all for sent1=spaces
25. pack
26. replace all sent with alltr(sent1+sent2+sent3)
27. select 1
28. append from d:\fox\texts\bundle.txt sdf
29. go top
30. do while not eof()
31. bundle= alltr(bundlfield)
32. select sent from sentence where like('*'+bundle+'*',lower(sent)) into

table temp
33. counter=reccount()
34. if counter>0
35. bundlenumber=bundlenumber+1
36. bundletext=bundletext+'('+alltr(str(bundlenumber))+').

'+upper(bundle)+carriage
37. replace all sent with strtr(lower(sent), bundle,'** '+upper(bundle)+' **')

&&the sent field in the table temp
38. go top &&the top of temp
39. do while not eof()
40. bundlesent=alltr(sent)
41. bundletext=bundletext+tabs+alltr(str(recn()))+'. '+bundlesent+carriage
42. skip
43. enddo
44. bundletext=bundletext+carriage
45. endif
46. select 1 &&access the table lexbundle
47. replace freq with counter
48. skip
49. enddo

Number Crunching and Pattern Matching in Foxpro Tables 90

50. strtofile(bundletext,'bundleresult.txt')
51. modi file bundleresult.txt

This program creates two tables, lexbundle and sentence, the first for holding
lexical bundles from bundle.txt, the second for storing the sentences of lglass.txt.
There are four fields in sentence. sent1, sent2, sent3 are for holding sentence
fragments, while sent for holding complete sentences. Statements 10—11
initialize two variables bundletext and bundlenumber for holding lexical bundles
and their sequence number. Statements 13—19 divide lglass.txt into sentences.
Statement 28 loads the lexical bundles into lexbundle. Statements 30—49 create
a loop, in which one by one the lexical bundles in lexbundle are assigned to the
variable bundle by statement 31, and then searched for in the sent field of
sentence and outputted to temp if found, done by statement 32. Note that the
contents stored in the variable bundle and the sent field are converted to lower
cases to make the search case-insensitive. The wild card * on either side of
bundle is used to ensure the successful extraction of sentences containing one of
the lexical bundles. Suppose bundle contains it must have been, and one of the
sentences in the sent field of sentence is You see, Kitty, it MUST have been either
me or the red king., a hit results because the sentence is turned into lower cases,
and the wild card * on either side of bundle matches respectively You see, Kitty,
and either me or the red king. All the sentences containing it must have been are
put to the table temp. Statement 33 assigns the number of such sentences to
counter by counting the number of records in temp. Statement 34 sets a condition:
if the search is successful, i.e. counter > 0, which means temp is not empty,
statements 35—44 are executed. Statement 35 counts the number of a lexical
bundles found in the sent field in sentence. Statement 36 converts the number
into a string followed by the lexical bundle in upper case plus a carriage return,
all of which are assigned to bundletext. carriage ensures that each lexical bundle
stored in bundletext is placed on a new line. At this stage bundletext serves as a
heading, under which the sentences containing the lexical bundle are listed.
Statement 37 changes the lexical bundle in the extracted sentences stored in the
field sent of temp into upper cases and mark them on either side of the bundle
with ** for easy viewing. Statements 38—43 are a loop, in which the sentences
in sent of temp containing the extracted lexical bundle are assigned to bundlesent
one by one, indented on the left with a tab. Statement 46 accesses the table
lexbundle, and statement 47 inserts the number of occurrences of the lexical
bundle in the field freq. Statement 48 moves the record pointer to the next lexical
bundle and the program moves back to statement 30 and repeats the above
process, until the end of lexbundle is reached. However, if the condition set by
statement 34 is not met, i.e. counter = 0, which means no sentences containing
the lexical bundle are found, the program goes directly to statement 46, accessing
lexbundle, moving the record pointer one step forward, going back to statement
31 and getting the next lexical bundle and starting a new round of searching.

Number Crunching and Pattern Matching in Foxpro Tables 91

Statement 50 outputs the contents of bundletext to bundleresult.txt, which looks
as follows:

(1). IT MUST HAVE BEEN
1. alice looked up at the rocking-horse-fly with great interest, and

made up her mind that ** IT MUST HAVE BEEN ** just repainted, it
looked so bright and sticky; and then she went on.

2. but it looked a little ashamed of itself, so i think ** IT MUST
HAVE BEEN ** the red queen.

3. you see, kitty, ** IT MUST HAVE BEEN ** either me or the red
king.

(2). I WAS IN THE
1. `so i shall be as warm here as ** I WAS IN THE ** old room,'

thought alice: `warmer, in fact, because there'll be no one here to scold
me away from the fire.

(3). THE END OF THE
1. a sudden thought struck her, and she took hold of ** THE END

OF THE ** pencil, which came some way over his shoulder, and began
writing for him.

2. `i'll see you safe to ** THE END OF THE ** wood -- and then i
must go back, you know.

 3. i'll go with you to ** THE END OF THE ** wood --
 4. they had just come to ** THE END OF THE ** wood.
(4). THE BACK OF THE

1. `i suppose they've each got "tweedle" round at ** THE BACK OF
THE ** collar,' she said to herself.

(5). THE MIDDLE OF THE
 1. ** THE MIDDLE OF THE ** night.
(6). THE OTHER SIDE OF

1. she very soon came to an open field, with a wood on ** THE
OTHER SIDE OF ** it:

2. and was that really - was it really a sheep that was sitting on **
THE OTHER SIDE OF ** the counter?

…

3.5.2 Collocational association of run

Collocation is very important in natural language processing, corpus linguistics
and language teaching and research. There are statistical tests for collocational
associations, the t test and the chi-square test, and measures such as the
likelihood ratio and mutual information. We’ll write a program to get a complete
concordance of the word run in alice.txt. The concordance will be arranged in the
KWIC (Key Word In Context) format with a four-word context on either side of

Number Crunching and Pattern Matching in Foxpro Tables 92

the key word, like the following:
hat she had to RUN back into the wood

you doing out here? RUN home this moment, and
dear, certainly: but now RUN in to your tea;
keep herself from being RUN over; and the moment

The likelihood ratios between run and its first right collocates are then computed
to check for significant collocational associations. To compute the likelihood
ratio, the following data are needed:
c1: the frequency of the key word
c2: the frequency of the first right collocate of the key word
c12: the frequency of the key word occurring with its first right collocate
n: size of text or corpus
p: c2/n
p1: c12/c1
p2: (c2-c12)/(n-c1)
The likelihood ratio logλ is obtained with

 logλ= log
),,(),,(

),,(),,(

2112211,12

1122112

pcnccbpccb
pcnccbpccb

−−
−−

 = log b(c12, c1, p) + log b(c2-c12, n – c1, p)
 – log b(c12, c1, p1) – log b(c2 – c12, n– c1, p2)

where b stands for binomial distribution, b(k, n, x) = xk(1-x)n-k. Therefore,

))1(log())1(log(

))1(log())1(log(log
)()(

2
)(

2
)(

11

)()()()(

122112212112

122112212112

cccnccccc

cccnccccc

pppp

pppp
−−−−−

−−−−−

−−−−

−+−=λ

which can be rewritten as

)).())((1log())(2log(

))(1log()log())())((1log(
))(log())(1log()log(log

12212122

12111211221

12212112

cccnpccp
ccpcpcccnp

ccpccpcp

−−−−−−−
−−−−−−−−+

−+−−+=λ

logλ is then multiplied with -2 since -2logλ is χ2 distributed. In the χ2 distribution
table, the significance level of α = 0.05 is 3.84 for one degree of freedom, so for
a collocational association to be significant, -2logλ should be≥3.84.
 The program is as follows:

likelihood.prg
1. set default to d:\fox\practice
2. set safe off

Number Crunching and Pattern Matching in Foxpro Tables 93

3. set talk off
4. set decimal to 8
5. clear
6. create table wordtoken(word c(25),freq n(8))
7. create table kwictable (context c(120),freq n(5))
8. create table likehood (context c(25),freq1 n(4),freq2 n(4),lkhratio

n(14,8))
9. close data
10. nothing=''
11. kwic=nothing
12. carriage=chr(13)
13. spaces=chr(32)
14. textinput=filetostr('d:\fox\texts\alice.txt')
15. textinput=strtran(textinput, '-',spaces)
16. textinput =strtran(textinput,spaces,carriage)
17. strtofile(textinput,'temp.txt')
18. select 1
19. use wordtoken
20. append from temp.txt sdf for word<>spaces
21. n=reccount()&&the total number of word tokens, needed in likelihood

ratio
22. go top
23. scan for lower(alltr(word))=='run' or lower(alltr(word))=='runs' or

lower(alltr(word))=='running' or lower(alltr(word))=='ran'
24. replace word with upper(word)
25. keyword=alltrim(word)
26. skip -4
27. for i=1 to 9
28. kwic=kwic+alltrim(word)+spaces
29. skip
30. endfor
31. sele 2
32. use kwictable
33. append blank
34. keywordposition=at(keyword, kwic)
35. replace context with replicate(spaces,40-keywordposition)+kwic
36. kwic=nothing
37. sele 1
38. endscan
39. sele 2
40. inde on righ(context,80) tag context
41. copy to run.txt sdf field context
42. copy to temp

Number Crunching and Pattern Matching in Foxpro Tables 94

43. select 3
44. use temp
45. replace all context with strtr(context,left(context,40),nothing)
46. replace all context with strtran(context,left (context, at(spaces,

context)),nothing)
47. replace all context with left(context,at(spaces,context))
48. select 3
49. use likehood
50. append from temp
51. replace all context with chrtr(context,'.,:;”()-`*[?]_!',nothing)
52. replace all context with strtr(context,”'”,nothing)
53. replace all context with proper(context)
54. replace all freq2 with 1
55. index on context tag context
56. total to temp on context
57. zap
58. append from temp
59. select 1&&access the table wordtoken
60. replace all freq with 1
61. index on word tag word
62. total to temp on word
63. zap
64. append from temp
65. replace all word with chrtr(word,'.,:;()-[?]_`*”!',nothing)
66. replace all word with strtr(word,”'”,nothing)
67. replace all word with prop(word)
68. inde on word tag word
69. total to temp on word
70. zap
71. append from temp for word<>spaces
72. sum freq to c1 for alltr(word)=='Run' or alltr(word)=='Runs' or

alltr(word)=='Running' or alltr(word)=='Ran'
73. select 3 &&access the table likehood
74. go top
75. do while not eof()
76. getword=alltr(context)
77. select 1
78. locate for alltr(word)==getword
79. collocatefreq=freq
80. select 3
81. replace freq1 with collocatefreq
82. skip
83. enddo

Number Crunching and Pattern Matching in Foxpro Tables 95

84. select 3
85. dele all for freq1=0
86. pack
87. go top
88. do while not eof()
89. c12=freq2
90. c2=freq1
91. p=c2/n
92. p1=c12/c1
93. if c2-c12=0
94. p2=(c2+0.01-c12)/(n-c1)&&0.01 is added in cases c1=c2, p2 will be 0

and the program will crash!
95. else
96. p2=(c2-c12)/(n-c1)
97. endif
98. lkhvalue=log(p)*c12+log(1-p)*(c1-c12)+log(p)*(c2-c12)+log(1-p)*((n-

c1)-(c2-c12))-log(p1)*c12-log(1-p1)*(c1-c12)-log(p2)*(c2-c12)-log(1-
p2)*((n-c1)-(c2-c12))

99. repl lkhratio with lkhvalue*-2
100. skip
101. enddo
102. index on lkhratio tag lkhratio descending
103. brow

The program is a bit too long, but its structure is fairly simple. It can be divided
into five sections, and we can use browse plus cancel to check the result of each
section. If the intended result of the section is achieved, we can then remove
browse and cancel and put them to other sections. The first section is between
statements 1—22, for table creation and data input; the second section is between
statements 23—42 for extracting run and its variants runs, ran, and running and
putting them in the KWIC format, with the keyword in centre and a four-word
context on either side. The third section is between statements 43—58 for getting
the first right collocate of the target word and putting it into the table likehood.
The fourth section is between statements 59—72 for calculating word
frequencies. The last section is between statements 73—103, for computing the
likelihood ratios of the keyword run with its first right collocates.
 In the first section, statements 6—8 create three tables wordtoken, kwictable
and likehood. The fields word and freq in wordtoken are for words from alice.txt
and their frequencies. The fields context and freq in kwictalbe are for the key
words with their four-word contexts on either side, and their frequencies. In
the second section, statements 23—38 create a loop using the command
scan…endscan, in which run and its variants are searched for in the word field of
wordtoken. Within the loop, statement 24 turns the located key word into upper

Number Crunching and Pattern Matching in Foxpro Tables 96

case, which is then assigned to the variable keyword in statement 25. Statements
26—30 produce the left four-word context and the right four-word context, with
the key word placed in the centre. The key word and its contexts are assigned to
kwic. Statement 34 determines how many characters away is the key word from
the left of kwic. Statement 35 ensures that all the key words are placed 40
characters away from the leftmost of the field context in kwictable. Statements 41
and 42 respectively copy the contents of kwictable to a text file run.txt and a
temporary table temp for further processing.
 In the third section, statements 45, 46 and 47 respectively remove the left
context, the key word, and get the first right collocates of the key word.
Statements 50—58 append the first right collocates of the key words to the table
likehood, remove the punctuation marks etc, and calculate their frequencies,
which are actually the frequencies of the key word with its first right collocates.
 The fourth section (statements 59—72) calculate word frequencies and get
the total occurrences of the key words.
 In the last section starting from statement 73, the first right collocates in the
context field of likehood are taken one by one and searched for in the table
wordtoken for their frequencies, which is then assigned to the variable
collocatefreq. Statement 80 appends collocatefreq to the field freq1 in likehood.
Statements 87—101 compute the likelihood ratios.
The following is part of the result stored in run.txt.

 burning with curiosity , she RAN across the field after
just now, only it RAN away when it saw

Rabbit with pink eyes RAN close by her. There
she appeared; but she RAN off as hard as

much frightened that she RAN off at once in
Alice got up and RAN off, thinking while she

through the door, she RAN out of the house,
trampled under its feet, RAN round the thistle again;

answered `Come on!' and RAN the faster, while more
off at once, and RAN till she was quite

the unfortunate gardeners, who RAN to Alice for protection.
King and the executioner RAN wildly up and down

the garden!' and she RAN with all speed back
that she had to RUN back into the wood

 Figure 3.3 is likehood. From in upwards all the values in lkhratio are greater
than 3.84. These words can be regarded as having significant collocational
associations with run in alice.txt. Likelihood ratios are very sensitive in capturing
collocational associations for collocates with low frequency. For example, wildly
occurs only once in alice.txt, and it occurs with run; the likelihood ratio between
run and wildly is 13.742, which can be regarded as highly significant.

Number Crunching and Pattern Matching in Foxpro Tables 97

Figure 3.3 Likelihood ratios of the collocates of run and its variants

3.5.3 Computing mean letter utility

According to Altmann, a letter has a set of properties, such as graphemic load,
phonemic load, frequency, letter utility, etc. Letter utility refers to the occurrences
of a letter in different positions of graphemes formed with it. It’s computed with
the following:

X

x x
x n

PP w
< >

< >
∈

= ∑ ,

where PP<x> is the letter utility of a letter, and Wx is its occurrences in different
positions in graphemes. The mean letter utility is computed with the following:

____ 1
| |

x

x x
x nx

PP w
n

< >

< >

∈< >

= ∑ ,

where n<x> is the number of different graphemes a letter occurs in. For example,
the letter q occurs in the following five graphemes representing the English
phoneme /k/:

Number Crunching and Pattern Matching in Foxpro Tables 98

cq, cqu, q, qu, que. PP<q> = 2 + 2 + 1 + 1 + 1 = 7;

qPP< > = 7/5 = 1.4.

In the English language, mean letter utility can measure the relevance of a

letter in graphemes since the earlier a letter appears in a grapheme the more it
contributes to its phonetic value. In d:\fox\table3 there is a table graphemetable
containing 271 different graphemes extracted from the one million word Brown
Corpus. The following is a program for computing the mean letter utility of the
26 English letters.

letterutility.prg
1. set defa to d:\fox\practice
2. clos data
3. set safe off
4. nothing=''
5. addpositions=nothing
6. countgrapheme=0
7. create table letterutility(alphabet c(2),mutility n(6,4),utility c(250))
8. for i=97 to 122
9. append blank
10. replace alphabet with chr(i)
11. endfor
12. select 2
13. use d:\fox\table3\graphemetable
14. sele 1
15. go top
16. do while not eof()
17. letter=alltrim(alphabet)
18. sele 2
19. scan for letter$grapheme
20. countgrapheme=countgrapheme+1
21. if occurs(letter,grapheme)>1
22. positions=alltrim(str(at(letter,alltrim(grapheme))))+'+'+alltrim(str(rat(let

ter,alltrim(grapheme)))) &&measure the two positions of letter in
grapheme

23. else
24. positions=alltrim(str(at(letter,alltrim(grapheme))))
25. endif
26. addpositions=addpositions+positions+'+'
27. endscan
28. addpositions=left(addpositions,rat('+',addpositions)-1) &&remove the

trailing +
29. meanutility='('+addpositions+')'+'/'+alltrim(str(countgrapheme))

Number Crunching and Pattern Matching in Foxpro Tables 99

30. select 1
31. replace utility with meanutility
32. replace mutility with &meanutility
33. addpositions=nothing&&empty it for the next round
34. countgrapheme=0
35. skip
36. enddo
37. brow

In this program statements 5—6 initialize addpositions and countgrapheme. The
former holds the positions of the target letter in graphemes formed with it, with a
+ sign after each position number; the latter the number of graphemes the letter
occurs in. Statement 7 creates letterutility with three fields: alphabet for the 26
letters, mutility for mean letter utility, and utility for the contents stored in
addpositions. Statements 8—11 load the 26 letters. Statements 19—27 search in
the grapheme field of graphemetable for the target letter, measure its positions in
graphemes containing it, and store its position numbers separated by a plus sign
in addpositions. Statement 29 puts addpositions in brackets followed by a
division sign /. Statement 32 converts the contents of addpositions into math
operation using the macro operator & and puts the result in mutility. Figure 3.4 is
part of letterutility.

Figure 3.4 Part of letterutility

Number Crunching and Pattern Matching in Foxpro Tables 100

Exercises

1. The table 80vgrowth in d:\fox\table3 contains the vocabulary growth data of 80
sets of samples from the BNC written text section, computed at a 2000-word
interval. Each set has 500 2000-word samples totalling 1,000,000 words,
randomly drawn without replacement. Copy the table to d:\fox\practice\
80vgrowth and write a program to compute the mean vocabulary growth of the
80 sets as the number of samples increases, the standard deviations of the
vocabulary growth of the 80 sets, and the 95% confidence intervals of the
vocabulary growth for the 80 sets. The standard deviation is obtained with:

N

xxsdv
2)(−∑

=

and the 95% confidence interval is obtained with ±1.96·sdv. You should add
four more fields to the newly copied table to hold the mean vocabulary growth,
the standard deviation, and the upper and lower bounds of the 95% confidence
interval.

2. In Exercise 9 of Chapter 1 we wrote a program called arclength.prg, in which
we computed the arch length of a set of 20 imagined word rank-frequencies. That
way of computing is very time-consuming, error prone and almost impossible for
larger set of data. Now rewrite the program and compute the arch length within a
table.

3. According to Quirk et al, semi-auxiliaries are verb idioms which express
modal or aspectual meaning and which are introduced by one of the primary
verbs HAVE and BE. The following verb idioms are semi-auxiliaries: be able to,
be about to, be apt to, be bound to, be due to, be going to, be likely to, be meant
to, be obliged to, be supposed to, be willing to, have to. These semi-auxiliaries
are in d:\fox\texts\semiaux.txt. Write a program to extract the sentences that
contain one of the semi-auxiliaries in alice.txt and lglass.txt. Mark the modal
auxiliaries with two asterisks on either side and capitalize all the letters of the
modal auxiliaries.

4. Write a program to pick out the sentences in alice.txt and lglass.txt that contain
the phrases more…than or more than.

5. Copy wordlist in d:\fox\table3 to d:\fox\practice\test and use test to do the
following by entering statements in the command window:
copy all the words ending in ship, hood, dom and craft to a new table;
centre-justify all the words in the word field of test, which is 25 characters in
length;

Number Crunching and Pattern Matching in Foxpro Tables 101

right-justify all the words;
left-justify all the words.

6. Modify likelihood.prg so that it can produce a concordance for get and its
variants in lglass.txt with a 5-word context on either side and compute the
likelihood ratios between get and its variants and their first right collocates.

7. The t-test can be used for testing collocational associations between two words.
t is obtained with the following:

N
s

xt
2

μ−
= .

N: size of text or corpus
 : frequency of the key word with its first right collocate divided by N
 µ: (frequency of the key word/N)×(frequency of the first right collocate)/N)
 s2: frequency of the key word with its first right collocates/N; s2= 
 N: size of corpus
The t-test is often used for ranking collocations rather than checking for level of
significance. Now modify likelihood.prg so that it can get a concordance of make
and its variants in lglass.txt and compute the t values between the key word and
its first right collocates and then rank them in descending order.

8. Modify bigram.prg so that it can produce trigrams from alice.txt.

9. Modify hapax.prg so that it can do the following using multitext (in
d:\fox\practice) created in 2.5.2.:
get the vocabulary size, number of hapaxes and dis legomena in each of the 48
text chunks and compute their standard deviation, mean and their maximum and
minimum number;
compute the ratio between the number of dis legomena and hapaxes in each of
the texts, the mean ratio, maximum ratio and minimum ratio;
compute the mean word length of the hapaxes and dis legomena of each text and
their average mean length, the maximum mean length and minimum mean
length.

10. In EFL (English as a Foreign Language) teaching, EFL course designers often
have to estimate the lexical coverage of the list of words to be taught to the
learner. That is, what percentage of the word tokens of texts the learner is
supposed to read after completing the course the intended set of vocabulary can
cover. Assuming the word types in wordlistb (in d:\fox\table3) are the set of

Number Crunching and Pattern Matching in Foxpro Tables 102

vocabulary a student of English should acquire, write a program to compute the
average number of word tokens of the 48 texts in d:\fox\texts, wordlistb’s lexical
coverage over each of the 48 texts, its average coverage, maximum coverage and
minimum coverage, and the standard deviation.

4 String Manipulation in Tables and Texts

One of the main tasks in linguistic and literary computing is string handling. For
example, if we want to study the distribution of parts of speech in a tagged
corpus, we must first remove the words attached to their POS tags before dealing
with the POS tags. To make a wordlist for a tagged corpus, it’s just the other way
round. Foxpro is equipped with many commands and functions for string
manipulation, some of which we have already learned in previous chapters. In
this chapter we’ll look at some more commands and functions that can be used in
string manipulation.

4.1 Commands and Functions

asc(string) This function gets the ASCII code of the first character of a
string. Type:

?asc('A') ↵
65

?asc('a') ↵
97

?asc('apple') ↵
97

 val(string) This function turns a number character in a string such as 45A,
6.78C etc into a number, discarding the following letters. If the first character is
not a number character, then this function returns zero, but if the first character is
a minus or plus sign followed by number characters and letters, the function
returns the sign as well as the number. Type:

?val('678.66A') ↵
678.66

?val('-34c') ↵
-34

?val('CD35') ↵
0.00

In d:\fox\table3 there is a table called files containing 406 file names from 1.txt to
406.txt. Since these numbers are actually characters so they are arranged by the

String Manipulation in Tables and Texts 104

computer in the following order: 1.txt, 10.txt, 100.txt, 101.txt, 102.txt and so on.
We can use the val(string) function to rearrange them in the order of 1.txt, 2.txt,
3.txt and so on. Type:

use d:\fox\table3\files ↵
index on val(filename) tag filename ↵
brow ↵

The order of the file names are re-arranged as desired.

isblank(string) This function checks whether string is a blank. Type:

?isblank(' a') ↵
.F.

isblank(' ') ↵
.T.

empty(string) This function is the same as isblank(string) except in

evaluating formatting characters such as chr(9), chr(10) and chr(13). Type:

a = ' ' ↵
?empty(a) ↵
.T.

isblank(a) ↵
.T.

a = chr(13) ↵
?empty(a) ↵
.T.

?isblank(a) ↵
.F.

isdigit(string) This function checks whether the first character of a string is

a number. Type:

a='45bc' ↵
?isdigit(a) ↵
.T.

String Manipulation in Tables and Texts 105

a='apple' ↵
?isdigit(a) ↵
.F.

isalpha(string) This function checks whether the first character of string is

an alphabetic character. If the string checked is alphabetic, the return value is .T.,
otherwise it’s .F. The following program checks which of the 256 ASCII codes
are alphabetic characters. For some computers the characters whose ASCII code
is larger than 126 are unprintable.

isalpha.prg
1. set defa to d:\fox\practice
2. close data
3. set safe off
4. clear
5. create table alphabet(chrcode c(10),characters c(5),ischar c(5))
6. for i=0 to 255
7. append blank
8. codes='chr('+alltr(str(i))+')'
9. replace chrcode with codes
10. replace characters with chr(i)
11. if isalph(chr(i))=.f.
12. replace ischar with '.F.'
13. else
14. replace ischar with '.T.'
15. endif
16. endfor
17. brow

isupper(string) This function checks whether the first character of string is
in upper case. Type:

?isupper('Foxpro') ↵
.T.

?isupper('foxpro') ↵
.F.

islower(string) This function checks whether the first character of string is

in lower case. Type:

islower('Apple') ↵
.F.

String Manipulation in Tables and Texts 106

islower('apple') ↵
.T.

space(n) This function produces n number of spaces. Type:

? 'Fox'+space(16)+ 'pro' ↵
Fox pro

padl(string,n,character) This function pads string on the left with a
number of character. The number is determined by n minus the length of string.
This function is often used for right justification. Type:

?padl('word',18, '*') ↵
**************word

?padl('word',18, ' ') ↵

 word

?padl('frequency',18, '*') ↵
 *********frequency

?padl('frequency',18, ' ')
 frequency

padr(stirng,n,character) This function pads string on the right with a

number of character. The number is determined by n minus the length of string.
This function is often used for left justification.

?padr('word',18, '*') ↵
word**************

?padr('frequency',18, '*') ↵
frequency*********

padc(string,n,character) This function centre-justifies string by putting a

number of character on either side of string, and the total number of characters is
n minus the length of string.

?padc('word',20, '*') ↵
********word********

?padc('wordlist',20, '*') ↵

String Manipulation in Tables and Texts 107

******wordlist******

rtrim(string) This function removes the trailing blanks of string.

w1='Fox '↵
w2='pro' ↵
?w1+w2 ↵
Fox pro

?rtrim(w1)+w2 ↵
Foxpro

ltrim(string) This function removes the preceding blanks of string.

w1='fox' ↵
w2=' pro' ↵
?w1+w2 ↵
Fox pro

?w1+ltrim(w2) ↵
Foxpro

evaluate(string) This function turns a numeric character expression into
numeric expressions and returns the result of the numeric expression.

a='2**3+4/3' ↵
?a ↵
2**3+4/3

?evaluate(a) ↵
9.33

text…endtext This command outputs to the screen lines of text between

text and endtext. Type the following in the command window. Use the down key
to move to a new line. Highlight the newly entered statements by dragging the
mouse from the left of text to the end of endtext and then press Enter.

text
This is a demonstration of the use of text…endtext
endtext

The text This is a demonstration of the use of text…endtext is outputted to the

String Manipulation in Tables and Texts 108

screen.

substr(string,n1,n2) This function cuts a chunk from string from position n1
to position n2.

?substr('handsome',1,4) ↵
hand

?substr('handsome',5,4) ↵
some

stuff(string,n1,n2,character) This function replaces string with character

from position n1 to position n2.

?stuff('handsome',1,4, 'two') ↵
twosome

?stuff('handsome',1,4, '') ↵
some

isleadbyte(string) In the computer machine codes, a single character such

as a, c, f etc in languages such as English consists of a single byte, while that of
some other languages such as Chinese consists of two bytes. This function
checks whether the first character of string is a double-bye character. If it is, the
return value is .T., otherwise it is .F. For example, isleadbyte(‘ ’) yields .T.
because is a Chinese character meaning I; it consists of two bytes. While
isleadbyte(‘I’) results in .F.

strconv(string,n) This function converts string into different types of

character specified by n. The following table shows the value of n and the types
of character conversion it makes.

Table 4.1 Codes for string conversion

N Types of Character Converted
1 converts single-byte characters in string to double-byte

characters.
2 converts double-byte characters in string to single-byte

characters.
3 converts double-byte Katakana characters in string to

double-byte Hiragana characters.

String Manipulation in Tables and Texts 109

4 converts double-byte Hiragana characters in string to
double-byte Katakana characters

5 converts double-byte characters in string to UNICODE .
6 converts UNICODE in string to double-byte characters.
7 converts string to locale-specific lowercase.
8 converts string to locale-specific uppercase.
9 converts double-byte characters in string to UTF-8
10 converts UNICODE characters in string to UTF-8
11 converts UTF-8 characters in string to double-byte characters.
12 converts UTF-8 characters in string to UNICODE characters.
13 converts single-byte characters in string to encoded base64

binary.
14 converts single-byte characters in string to decoded base64

binary
15 converts single-byte characters in string to encoded hexBinary.
16 converts single-byte characters in string to decoded hexBinary.

Enter the following in the command window:

word='eat' ↵
?len(word) ↵
3

word=strconv(word,1) ↵
?len(word) ↵
6

?word ↵
ｅａｔ

isleadbyte(word) ↵

 .T.

 word=strconv(word,2) ↵
 ?len(word) ↵
 3

 ?word ↵
 Eat

 isleadbyte(word) ↵

String Manipulation in Tables and Texts 110

 .F.

4.2 Low-level File Functions

The following are functions for low-level file handling; that is, these functions
deals with files at the machine code level.

fcreat(filename [, fileattributecode]) This function creates a text file and
returns a file handle number to the file. We can assign the file handle number to a
variable so that the file can be accessed with the variable. If the file creation fails,
the return value is -1. If the file already exists, it’ll be overwritten without
warning. fileattributecode specifies the file access attributes, which are listed
below:
 Code Access attributes
 0 (Default) Read/write
 1 Read-only
 2 Hidden
If we want to create a file with the read/write file access attribute, we can omit 0,
using only fcreat(filename). Now type:

newfile=fcreate('test1.txt') ↵
?newfile ↵
6

newfile=fcreate('test2.txt') ↵
?newfile ↵
7

newfile=fcreate('test1.txt') ↵
?newfile ↵
-1

The second newfile=fcreate(‘test1.txt’) returns -1 because test.txt created by the
first newfile=fcreate(‘test1.txt’) is now open.

 fopen(filename [, fileattributecode]) This function opens a file with
specified file access attributes. It returns a file handle number to the file opened.
If the function successfully opens the file, it returns a positive number, otherwise
it returns -1. The file handle number can be assigned to a variable so that the file
can be accessed with the variable. The file attribute codes are as follows:
 code file access attribute
 0 (Default) Read-only

String Manipulation in Tables and Texts 111

 1 Write-only
 2 Read and Write
The default file access attribute is read-only, and 0 can be omitted.

opfile=fopen('d:\fox\texts\alice.txt') ↵
?opfile ↵
6

opfile=fopen('d:\fox\texts\lglass.txt') ↵
?opfile ↵
7

opfile=fopen('d:\fox\texts\alice.txt') ↵
?opfile ↵
-1

close all ↵
opfile=fopen('d:\fox\texts\alice.txt') ↵
?opfile ↵
6

fseek(filehandlenumber,bytesmoved [, position]) This function moves the

file pointer within a file created or opened with fcreat() or fopen().
filehandlenumber is the file handle number returned by fcreat() or fopen().
bytesmoved specifies the distance measured in bytes the file pointer is moved
from position. position specifies the position of the file pointer. The following
lists the file pointer position codes:
 Position code destination
 0 (Default) the beginning of the file.
 1 The current file pointer position.
 2 The end of the file.
To move the file pointer to the top, type:

close all ↵
opfile=fopen('d:\fox\texts\alice.txt') ↵
fpointer=fseek(opfile,0,0) ↵
?fpointer ↵
0

The second statement assigns the file handle number to opfile; fseek(opfile,0,0)
moves the file pointer to the top of the file, which returns 0, meaning the file
pointer is 0 byte away from the top of the file. Now enter the following:

String Manipulation in Tables and Texts 112

fpointer=fseek(opfile,100,0) ↵
?fpointer ↵
100

This means the file pointer is moved 100 bytes forward from the beginning of the
file.

?fpointer=fseek(opfile,50,1) ↵
?fpointer ↵
150

fseek(opfile,50,1) moves the file pointer 50 bytes forward from the current file
pointer position, which is 100 bytes from the top, so the result is 150.

fpointer=fseek(opfile,0,2) ↵
?fpointer ↵
151707

This moves the file pointer all the way to the bottom of the file and it’s 151,707
bytes from the top of the file.

fpointer=fseek(opfile,60,0) ↵
?fpointer↵
60

fpointer=fseek(opfile,75,1) ↵
?fpointer ↵
135

fpointer=fseek(opfile,45,1) ↵
?fpointer ↵
180

fseek(opfile,60,0) moves the file pointer 60 bytes downwards from the top, while
fseek(opfile,75,1) moves the file pointer 75 bytes downwards from the current
position, which is 60 bytes from the top; fseek(45,1) moves the file pointer 45
bytes downwards from the current position, which is now 135 bytes from the top,
putting the file pointer 180 bytes away from the top of the file. If bytesmoved is
negative, the file pointer is moved backwards, i.e. towards the top of a file. Now
the file pointer is 180 bytes away from the top of the file.

fpointer=fseek(opfile,-160,1) ↵

String Manipulation in Tables and Texts 113

?fpointer ↵
20

The first statement moves the file pointer 160 bytes backwards from the current
file pointer position, which is 180, and the distance between the file pointer and
the top of the file is now 20.

fgests(filehandlenumber [, numberofbytes]) This function gets a string from
a file created with fcreate() or opened with fopen(). filehandlenumber is the file
handle number and numberofbytes specifies the length of the string measured in
number of bytes this function can get starting from the current position of the file
pointer. The maximum number of bytes this function can return is 8,192.
However, it stops when a carriage return is encountered even if the number of
bytes of the string is less than the specified number. If numberofbytes is omitted,
the number of bytes this function returns is 256. After the action of fgets() is
completed, the file pointer is placed at the place where it stops, or right behind
the carriage return when one is encountered. Suppose we want to get 120 bytes of
string from the place 9 bytes from the top of alice.txt, type:

close all ↵
fhandle=fopen('d:\fox\texts\alice.txt') ↵
fseek(fhandle,9,0) ↵
getstring=fgets(fhandle,120) ↵
?getstring↵
ALICE’S ADVENTURES IN WONDERLAND

The string is only 32 bytes long because it’s followed by a carriage return so the
function stops there.

fread(filehandle, numberofbytes) Like fgets(), this function gets data from a
file created with fcreat() or opened with fopen(). The difference is that the
maximum number of characters it can get from the file is 65,535, and it doesn’t
stop at carriage returns. After the action of fread() is completed, the file pointer is
positioned at the position 65,535 bytes from its starting position. Now type:

close all ↵
fhandle=fopen('d:\fox\texts\alice.txt') ↵
fseek(fhandle,9,0) ↵
getstring=fread(fhandle,120) ↵
?getstring↵
ALICE’S ADVENTURES IN WONDERLAND

String Manipulation in Tables and Texts 114

 CHAPTER 1

fputs(filehandlenumber, string [, numberofcharacters]) This function
inputs string to a file created with freat() or opened with fopen().
filehandlenumber is the file handle number and string is the data to be inputted to
the file. numberofcharacters specifies how many characters of string are to be
inputted to the file, but this option is seldom used in actual practice. Now type:

close all ↵
fhandle=fcreate('test.txt') ↵
fputs(fhandle,'This is the fputs() function') ↵
fputs(fhandle,'It inputs strings with carriage returns.') ↵
close all ↵
modi file test.txt ↵
This is the fputs() function.
It inputs strings with carriage returns.

fwrite(filehandlenumber, string [, numberofcharacters]) Like the fputs()
function, this function inputs string to a file created with freat() or opened with
fopen(). filehandlenumber is the file handle number and string is the data to be
written into the file. numberofcharacters specifies how many characters of string
are to be written into the file, but it’s seldom used in actual practice. The
difference between fputs() and fwrite() is that the latter doesn’t put carriage
returns at the end of string.

close all ↵
fhandle=fcreate('test.txt') ↵
fwrite(fhandle,'This is the fputs() function.') ↵
fwrite(fhandle,'It inputs strings with carriage returns.') ↵
close all ↵
modi file test.txt ↵
This is the fputs() function.It inputs strings with carriage returns.

fclose(filehandle) This function closes a file created with fcreate() or
opened with fopen(). It can be used instead of close all.

close all ↵
fhandle=fcreate('test.txt') ↵
fwrite(fhandle,'This tests the fclose() function.') ↵
fclose(fhandle) ↵
modi file test.txt ↵
This tests the fclose() function.

String Manipulation in Tables and Texts 115

feof(filehandle) This function checks whether the file pointer is at the end
of a file created with fcreate() or opened with fopen(). If the file pointer is at the
end of the file, the return value is .T., otherwise it is .F.

close all ↵
fhandle=fopen('d:\fox\texts\alice.txt') ↵
fseek(fhandle,0) ↵
?feof(fhandle) ↵
.F.

fseek(fhandle,0,2) ↵
?feof(fhandle) ↵
.T.

4.3 Set Up Relations Among Tables With a Common Field

In this section, we’ll learn how to establish relations among tables with a
common field so that we can access these tables at the same time for string
handling, number crunching, outputting the contents of the different fields in
these tables to a text file or to a table, etc. First, we’ll look at the commands used
in setting up such relations.

use tablename alias aliasname This command opens a table and gives it
an alias. Foxpro tables can be given aliases. The work areas in which tables are
open have default aliases, which are a through j for work areas 1 through 10
respectively. For work areas from 11 to 32,767 the default aliases are w11
through w32767. Aliases are very useful for linking tables with a common field
open in different work areas. We’ll demonstrate the use of aliases after we have
looked at how to establish relations among tables with a common field.

set relation to fieldname into | [tablename] [tablealiase] | This command

links a table open in a work area, the parent table, to another table tablename, the
child table, open in another work area through their common field fieldname. If
tablename has an alias, tablealiase can be used instead. To establish such
relations, both tables must be indexed first, and once such relations are
established, the fields in the child table can be accessed in the work area where
the parent table is open and its record pointer moves with the record pointer of
the parent table. The alias of the child table or its work area must be put before
the field of the child table when being accessed from the work area of the parent
table. We’ll establish relations between two tables w1 and w2 in d:\fox\table3
with w2 as the parent table. w1 has two fields, word and freq, the former
containing a set of words and the latter word frequency. w2 has two fields as well,

String Manipulation in Tables and Texts 116

word and wlength, the former containing the same set of words as in the word
field of w1, the latter word length. Now set default to d:\fox\table3 and type:

selec 1 ↵
use w1 ↵
index on word tag word ↵
selec 2 ↵
use w2 ↵
index on word tag word
set relation to word into w1 ↵

If we want to list the first twenty words with their frequency from w1 and word
length from w2 to the screen from w2’s work area, type:

list word, a.freq, wlength for recno()<21 ↵

a.freq stands for the freq field of w1 in work area 1, whose alias is a. The
following is displayed on the screen:

RECORD# WORD A->FREQ WLENGTH
1 A 25897 1
2 A.m. 9 4
3 Aback 1 5
4 Abandon 62 7
5 Abandonment 9 11
6 Abate 2 5
7 Abbey 24 5
8 Abbot 10 5
9 Abbreviate 2 10

10 Abbreviation 6 12
11 Abdicate 2 8
12 Abdomen 1 7
13 Abdominal 1 9
14 Aberrant 2 8
15 Aberration 3 10
16 Abet 1 4
17 Abeyance 2 8
20 Abhor 1 6
18 Abhorrence 1 10
19 Abhorrent 2 9

To output the above to a table called temp in d:\fox\practice, type:

copy to d:\fox\practice\temp field word, a.freq, wlength ↵

String Manipulation in Tables and Texts 117

The following demonstrates the use of table aliases in establishing relations
between two tables with a common field. Don’t press Enter until after all the
statements have been entered in the command window and highlighted:

sele 1
use w1 alia tbl1
inde on word tag word
selec 2
use w2
inde on word tag word
set relation to word into tbl1
list word, tbl1.freq,wlength for recno()<21

The result is as follows:

RECORD# WORD TBL1->FREQ WLENGTH
 1 A 25897 1
 2 A.m. 9 4
 3 Aback 1 5
 4 Abandon 62 7
 5 Abandonment 9 11
 6 Abate 2 5
 7 Abbey 24 5
 8 Abbot 10 5
 9 Abbreviate 2 10
 10 Abbreviation 6 12
 11 Abdicate 2 8
 12 Abdomen 1 7
 13 Abdominal 1 9
 14 Aberrant 2 8
 15 Aberration 3 10
 16 Abet 1 4
 17 Abeyance 2 8
 20 Abhor 1 6
 18 Abhorrence 1 10
 19 Abhorrent 2 9

set relation to This command breaks relations between two tables.

set skip to | [[tablename1] [, tablename2]…] [[tablealias1] [, tablealias2…]]

| This command links the parent table with two or more child tables; these
tables must have a common field. However, for this command to work, the tables
must be indexed and they must be linked with each other using the set relation
command. In d:\fox\table3 there is a table w3, which has the word field

String Manipulation in Tables and Texts 118

containing the same set of words as in w1 and w2, and the rng field containing
the range of the set of words. setskip.prg uses w1 as the parent table and links the
three tables together through their common field word to output word, freq of w1,
wlength of w2 and rng of w3 to a new table temp.

setskip.prg
1. set defa to d:\fox\practice
2. set safe off
3. close data
4. select 1
5. use d:\fox\table3\w1 alias tbl1
6. index on word tag word
7. sele 2
8. use d:\fox\table3\w2 alias tbl2
9. inde on word tag word
10. sele 3
11. use d:\fox\table3\w3 alias tbl3
12. inde on word tag word
13. select 2
14. set relation to word into tbl3
15. selec 1
16. set relation to word into tbl2
17. set skip to tbl2,tbl3
18. copy to temp field word,freq,tbl2.wlength,tbl3.rng
19. use temp
20. brow

4.4 Applications

4.4.1 Processing double-byte languages

In d:\fox\texts there is a short text in Chinese chinese.txt. It’s a brief introduction
to linguistic computing with Foxpro. It’s as follows:

Figure 4.1 A short Chinese text

String Manipulation in Tables and Texts 119

We’ll write a program to tokenize this short text, turning it into individual
Chinese characters, and then computing the frequency of these characters. We
can’t use the white space tokenizer to tokenize this text because there are no
white spaces between Chinese characters in Chinese texts. One way to tokenize a
Chinese text is to make continuous two-byte cuts starting from the top of a
Chinese text since Chinese characters are two-byte long each. But the problem is
many Chinese texts also have one-byte characters. Take the above short text as an
example, there are English words such as FOXPRO, PERL and so on and a letter
C. In addition, the punctuation marks in the first paragraph are Chinese
punctuation marks, which are of double bytes, but those used in the second
paragraph are the ones used in English texts, which are of single-byte. If we
tokenize this text using two-byte cuts, the result would be a mess of garbled
codes. If we convert all the single-byte characters in the text into double-byte
characters, then we can safely use the two-byte cut tokenization. The program is
as follows.

chinese1.prg
1. set defau to d:\fox\practice
2. set safe off
3. close data
4. creat table chinese (word c(15),freq n(5))
5. nothing=''
6. tokens=nothing
7. carriage=chr(13)
8. spaces=chr(32)
9. textput=filetostr('d:\fox\texts\chinese.txt')
10. for i=1 to 32
11. textinput=strtr(textput,chr(i),nothing)
12. endfor
13. textinput=strcon(textinput,1)
14. do while len(textinput)>0
15. cut=alltrim(substr(textinput,1,2))
16. textinput=stuff(textinput,1,2,nothing)
17. tokens=tokens+cut+carriage
18. enddo
19. strtofile(tokens,'temp.txt')
20. append from temp.txt sdf
21. replace all freq with 1
22. index on word tag word
23. total to temp on word
24. zap
25. append from temp FOR word<>spaces
26. brow

String Manipulation in Tables and Texts 120

 In this program, statements 10—12 remove unprintable characters. Statement
13 converts textinput, which holds the contents of the text, into a double-byte
string. Statements 14—18 create a loop, in which two-byte characters are cut one
at a time from textinput until the length of textinput becomes zero. Statement 15
assigns the first two bytes of textinput to cut. Statement 16 removes the two bytes
that have just been assigned to cut from textinput, otherwise cut will be assigned
the same two bytes again and again and the program will go into a dead loop.
This program can handle a Chinese text of up to 250,000 words. Larger texts
should be divided into smaller chunks. It can correctly handle Chinese texts
mixed with single one-byte characters such as 1, a, Y and so on. But if there are
English words consisting more than one letter, these words will be broken into
individual two-byte letters. The result is shown in Figure 4.2.

Figure 4.2 Part of the tokenized chinese.txt before totalling

String Manipulation in Tables and Texts 121

 Next, we’ll write a program that can properly handle Chinese texts mixed
with English words formed by one-byte letters using the function
isleadbyte(string). The program is as follows:

chinese2.prg
1. set defau to d:\fox\practice
2. set safe off
3. set talk on
4. clear
5. close data
6. creat table chinese (word c(15),freq n(5))
7. nothing=''
8. carriage=chr(13)
9. spaces=chr(32)
10. tokens=nothing
11. textinput=filetostr('d:\fox\texts\chinese.txt')
12. for i=1 to 12
13. textinput=strtr(textinput,chr(i),nothing)
14. endfor
15. do while len(alltr(textinput))>0
16. cut=substr(textinput,1,1)
17. byteplace=0
18. do while isleadbyte(cut)=.f. and len(alltr(textinput))>0
19. textinput=stuff(textinput,1,1,nothing)
20. if byteplace=0 or cut=',' or cut='.' Or cut='?' or cut='!' or cut=':' or cut='”'

or cut=':'
21. tokens=tokens+carriage+cut
22. else
23. tokens=tokens+cut
24. endif
25. cut=substr(textinput,1,1)
26. byteplace=1
27. enddo
28. cut=substr(textinput,1,2)
29. textinput =stuff(textinput,1,2,nothing)
30. tokens=tokens+carriage+cut
31. enddo
32. tokens=strtr(tokens,spaces,carriage)
33. strtofile(tokens,'temp.txt')
34. append from temp.txt sdf
35. replace all freq with 1
36. index on word tag word
37. total to temp on word

String Manipulation in Tables and Texts 122

38. zap
39. append from temp for word<>spaces
40. brow

This program turns a text in Chinese into a frequencied Chinese wordlist, while
preserving single-byte strings intact, as shown in Figure 4.3. There is no limit to
the length of texts to be processed. But to increase processing speed, long texts
should be divided into shorter chunks, say, about 500,000 Chinese characters in
length. Statements 12—14 remove non-printable characters. Statements 15—31
form a loop, within which single-byte and double-byte characters are cut from
textinput and processed until textinput is exhausted. Tokenization takes place
between statements 16—32. Statement 16 assigns one byte from textinput to cut,
and statement 17 sets byteplace to 0. Statement 18 checks whether cut contains a
single-byte character or a double-byte character. If it’s half of a double-byte
Chinese character, the program goes to statement 28, which assigns the complete
double-byte Chinese character to cut. This double-byte character is subsequently
removed from textinput in statement 29. cut is then added to tokens on a new line
in statement 30. Then the program goes back to statement 16, and cut is assigned
another byte and byteplace is again set to 0. If cut is a single-byte character, the
program goes to statement 19, which removes this single-byte character from
textinput. Statement 20 determines whether this character is the first character of
a single-byte string (by checking the value of byteplace. If it’s 0, it must be the
first character of a single-byte string, such as P in PERL.), or one of the
single-byte punctuation marks. If so, this single-byte character is added to tokens
on a new line in statement 21; otherwise this character is placed on the same line
with the previous character in statement 23. Statement 25 then assigns a new byte
to cut from textinput, and byteplace is set to 1. If this character is still a
single-byte character, the program goes to statement 19, which removes this byte
from textinput. Then the program goes to statement 23 because the value of
byteplace now is 1, and cut is placed on the same line with the previous
single-byte character. If this byte is part of a double-byte character, the program
goes to statement 28 to get the complete double-byte character, and statement 29
removes this character from textinput. Statement 30 adds this character to tokens
on a new line. Then the program goes back to statement 16 to start another round
of processing. After textinput is exhausted, statement 32 separates the possible
strings such as “, PROLOG” in tokens into “,” and “PROLOG”. Statement 33
puts the contents of tokens to a temporary text file temp.txt, which is appended to
the table chinese. Part of the result before totalling is shown in Figure 4.3.

4.4.2 Corpora handling

Corpora are now widely used in linguistics, translation, natural language

String Manipulation in Tables and Texts 123

processing, language teaching, etc. There are untagged corpora and tagged
corpora. The first generation electronic corpora, the Brown Corpus and the LOB
Corpus have both versions, while mega-corpora like the BNC have only the
tagged version. In this section we’ll learn how to write programs for handling
corpora.

Figure 4.3 Part of the tokenized chinese.txt before totalling obtained with
chinese2.prg

The untagged LOB has reference codes as shown below:
A01 1 **[001 TEXT A01**]
A01 2 *<*'*7STOP ELECTING LIFE PEERS**'*>
A01 3 *<*4By TREVOR WILLIAMS*>

String Manipulation in Tables and Texts 124

A01 4 |^A *0MOVE to stop \0Mr. Gaitskell from nominating any more
The characters from position 1 to 7 on the left are reference codes,

respectively standing for text category, text number and line number of the text.
For example, A01 1 represents text category A, text 1, line 1. This type of
reference codes is called fix field reference and was used in the first generation
corpora the Brown Corpus and LOB Corpus. Now we’ll write a program adding
reference codes like the ones shown above to text1.txt in d:\fox\texts. We’ll use
alice as the text category, 01 as text number and 1, 2, 3… and so on as line
numbers. The program is as follows:

fixfieldcode.prg
1. set defa to d:\fox\practice
2. set safe off
3. close data
4. nothing=''
5. getlines=nothing
6. carriage=chr(13)
7. spaces=chr(32)
8. creat table fixfieldcode (lines c(75))
9. textinput=filetostr('d:\fox\texts\text1.txt')
10. do while len(textinput)>1
11. getlines=getlines+substr(textinput,1,at(carriage,textinput)+1)
12. textinput=stuff(textinput,1,at(carriage,textinput)+1,nothing)
13. enddo
14. strtofile(getlines,'temp.txt')
15. append from temp.txt sdf for len(alltrim(lines))>0
16. repl all lines with 'A01 '+padl((recno()),3,spaces)+spaces+lines
17. copy to fixfieldcode.txt sdf
18. modify file fixfieldcode.txt

In this program, statement 11cuts a line (including the carriage return at the end
of the line, done by +1) one by one from textinput that contains text lines ending
in a carriage return. Statement 12 removes the line assigned to getlines.
Statement 16 adds reference codes to the lines, with the line numbers right
justified with padl((recn0(),3,spaces). Part of text1.txt with reference codes is
shown below:

A01 1 ALICE'S ADVENTURES IN WONDERLAND
A01 2 CHAPTER I
A01 3 Down the Rabbit-Hole
A01 4 Alice was beginning to get very tired of sitting by her sister
A01 5 on the bank, and of having nothing to do: once or twice she had
A01 6 peeped into the book her sister was reading, but it had no
A01 7 pictures or conversations in it, `and what is the use of a book,'

String Manipulation in Tables and Texts 125

A01 8 thought Alice `without pictures or conversation?'
A01 9 So she was considering in her own mind (as well as she could,
A01 10 for the hot day made her feel very sleepy and stupid), whether
A01 11 the pleasure of making a daisy-chain would be worth the trouble
A01 12 of getting up and picking the daisies, when suddenly a White
A01 13 Rabbit with pink eyes ran close by her.
A01 14 There was nothing so VERY remarkable in that; nor did Alice
A01 15 think it so VERY much out of the way to hear the Rabbit say to

4.4.3 Dealing with POS tags

Some corpora are tagged; that is, their words have POS tags (parts of speech
tags). There are different POS tag sets. The following is a fragment of the tagged
LOB:

B01 2 ^ editorial_NN ._.
B01 3 ^ dilemma_NN of_IN South_NP Africa_NP ._.
B01 4 ^ Prime_NPT Minister_NPT after_IN Prime_NPT

Minister_NPT speaks_VBZ
B01 4 out_RP in_IN revulsion_NN

The following is a fragment of the BNC:
<s n="1"><w PNP>I <w VVD>began <w NN1-VVB>work <w
PRP>on <w AT0>the <w AJ0>big <w NN1>glass <w PRP>on <w
CRD>27 <w NP0>July <w CRD>1967<c PUN>, <w VVD>wrote <w
NP0-NN1>Harsnet<c PUN>.
CJC>and <w VVD>started <w TO0>to <w VVI>transcribe<c PUN>.

The following is a fragment of the Open ANC (Open American National Corpus,
http://www.AmericanNationalCorpus.org/OANC) tagged with the XML codes:

<struct type="tok" from="58" to="60">
 <feat name="id" value="2.5" />
 <feat name="base" value="of" />
 <feat name="msd" value="IO" />
 </struct>

<struct type="tok" from="61" to="68">
 <feat name="id" value="2.6" />
 <feat name="base" value="english" />
 <feat name="msd" value="JJ" />

</struct><struct type="tok" from="69" to="79">
 <feat name="id" value="2.7" />
 <feat name="base" value="literature" />
 <feat name="msd" value="NN1" />
 </struct>

Apart from corpora with POS tags, there are corpora that have syntactical

String Manipulation in Tables and Texts 126

codes for phrases, clauses and sentences. The ICE Corpus (the International
Corpus of English) is an example. The following is a fragment of the ICE-GB
Corpus (the British English sub-corpus of ICE):

[<#10:1> <sent>]
PU,CL(main,cop,past)
 SU,NP()
 NPHD,PRON(pers,sing) {It}
 A,AVP(excl)
 AVHD,ADV(excl) {just}
 VB,VP(cop,past)
 MVB,V(cop,past,neg) {wasn't}
 CS,NP()
 DT,DTP()
 DTCE,ART(indef) {an}
 NPHD,N(com,sing) {end}
 PUNC,PUNC(comma) {,}
A variety of information can be extracted from tagged corpora. Now we’ll

write a program processing tagged texts. In d:\fox\texts there is a tagged version
of text1.txt called text1_tagged. It was tagged using the CLAWS5 tag set. A
fragment of text1_tagged.txt is shown below:

<s>
ALICE_NP1 'S_GE ADVENTURES_NN2 IN_II
WONDERLAND_NP1 CHAPTER_NN1 I_ZZ1 Down_II the_AT
Rabbit-Hole_NP1 Alice_NP1 was_VBDZ beginning_VVG to_TO
get_VVI very_RG tired_JJ of_IO sitting_VVG by_II her_APPGE
sister_NN1 on_II the_AT bank_NN1 ,_, and_CC of_IO having_VHG
nothing_PN1 to_TO do_VDI :_: once_RR or_CC twice_RR
she_PPHS1 had_VHD peeped_VVN into_II the_AT book_NN1
her_APPGE sister_NN1 was_VBDZ reading_VVG ,_, but_CCB
it_PPH1 had_VHD no_AT pictures_NN2 or_CC conversations_NN2
in_II it_PPH1 ,_, `_" and_CC what_DDQ is_VBZ the_AT use_NN1
of_IO a_AT1 book_NN1 ,_, '_GE thought_NN1 Alice_NP1 `_"
without_IW pictures_NN2 or_CC conversation_NN1 ?_? '_"
</s>

We'll first tokenize the text and make a wordlist with POS tags. The program is
as follows:

taggedwords.prg
1. set defa to d:\fox\practice
2. close data
3. set talk off
4. set safety off
5. create table taggedword (word c(35), freq n(8), wlength n(3))

String Manipulation in Tables and Texts 127

6. textinput=filetostr('d:\fox\texts\text1_tagged.txt')
7. nothing=''
8. carriage=chr(13)
9. spaces=chr(32)
10. textinput=strtran(textinput,'-',spaces)
11. textinput=strtr(textinput,spaces,carriage)
12. textinput=chrtran(textinput,'`,.?!:;()”',nothing)
13. textinput=strtran(textinput,”'”,nothing)
14. strtofile(textinput,'temp.txt')
15. append from temp.txt sdf for word<>spaces and word<>'_' and

word<>'<'
16. replace all word with proper(word)
17. replace all freq with 1
18. index on word tag word
19. total to temp on word
20. zap
21. append from temp
22. brow

Part of the result is shown in Figure 4.4.

Figure 4.4 Part of wordlist of text1_tagged.txt with POS tags

String Manipulation in Tables and Texts 128

 If we want to remove the POS tags, type in the command window:

replace all word with stuff(word,at('_',word),30,'') ↵

To remove the words, type:

replace all word with stuff(word,1,at('_',word),'') ↵

4.4.4 Making concordance

Now we’ll write a program to make a concordance of every word in alice.txt. The
concordance will be in the KWIC format, with a four-word context on either side
of the key word. The program is as follows:

concord1.prg
1. set defa to d:\fox\practice
2. set safe off
3. set talk off
4. clear
5. clos data
6. nothing=''
7. linebreak=chr(10)
8. carriage=chr(13)
9. spaces=chr(32)
10. leftcontext=nothing
11. rightcontext=nothing
12. keyword=nothing
13. concordance=nothing
14. textinput=fileto('d:\fox\texts\alice.txt')
15. textinput=strtr(textinput,carriage+linebreak,spaces)
16. textinput =strtr(textinput,'--',spaces)
17. textinput=strtr(textinput,spaces+spaces,nothing)
18. textinput ='* * * * '+ textinput +' * * * * '&¬e the space after each *

and the space before the first * on the right of textinput
19. do while len(textinput)>1
20. texttocut=textinput
21. for i=1 to 4
22. spaceposition=at(spaces,texttocut)
23. cut=substr(texttocut,1,spaceposition)
24. texttocut=stuff(texttocut,1,spaceposition,nothing)
25. leftcontext=leftcontext+cut
26. endfor

String Manipulation in Tables and Texts 129

27. spaceposition=at(spaces,texttocut)
28. keyword=substr(texttocut,1,spaceposition)
29. texttocut=stuff(texttocut,1,spaceposition,nothing)
30. for i=1 to 4
31. spaceposition=at(spaces,texttocut)
32. cut=substr(texttocut,1,spaceposition)
33. texttocut=stuff(texttocut,1,spaceposition,nothing)
34. rightcontext=rightcontext+cut
35. endfo
36. concordline=padl(leftcontext,40,spaces)+upper(keyword)+rightcontext
37. concordance=concordance+concordline+carriage
38. leftcontext=nothing
39. rightcontext=nothing
40. firstspace=at(spaces,textinput)
41. textinput=stuff(textinput,1,firstspace,nothing)
42. enddo
43. strtof(concordance,'concordance.txt')
44. modify file concordance.txt

In this program, statements 10—13 initialize leftcontext, rightcontext, keyword
and concordance, which respectively hold the left four-word context, the key
word, the right four-word context, and concordance lines. Statement 17 ensures
there is only one space between words. Statement 18 adds four asterisks on either
side of textinput, which serve as dummy words to provide a complete left
four-word context and right four-word context respectively for the initial three
words and the last three words of textinput. Statement 19 ensures that the
program will loop between statement 19 and statement 42 until textinput is
exhausted. Statement 20 assigns the contents of textinput to texttocut. Statements
21—26 produce the left four-word context, cut one by one from texttocut.
Statement 28 cuts the keyword from texttocut, and statements 30—35 produce
the right four-word context. Statement 36 puts the left four-word context, the
keyword and the right four-word context to concordline, with the keyword 40
spaces from the leftmost of concordline. Statement 37 stores all the concordlines,
putting each on a new line. Statements 38—39 empty leftcontext and rightcontext
for the next round of processing. Statement 41 removes the first word of textinput
so that the second word will be the keyword in the next round of processing.
 The following is part of the result.

* * * * ALICE'S ADVENTURES IN WONDERLAND CHAPTER
 * * * ALICE'S ADVENTURES IN WONDERLAND CHAPTER I

 * * ALICE'S ADVENTURES IN WONDERLAND CHAPTER I Down
 * ALICE'S ADVENTURES IN WONDERLAND CHAPTER I Down the

 ALICE'S ADVENTURES IN WONDERLAND CHAPTER I Down the Rabbit-Hole
 ADVENTURES IN WONDERLAND CHAPTER I Down the Rabbit-Hole Alice

 IN WONDERLAND CHAPTER I DOWN the Rabbit-Hole Alice was

String Manipulation in Tables and Texts 130

 WONDERLAND CHAPTER I Down THE Rabbit-Hole Alice was beginning
 CHAPTER I Down the RABBIT-HOLE Alice was beginning to

 I Down the Rabbit-Hole ALICE was beginning to get
 Down the Rabbit-Hole Alice WAS beginning to get very
 the Rabbit-Hole Alice was BEGINNING to get very tired

 Rabbit-Hole Alice was beginning TO get very tired of
 Alice was beginning to GET very tired of sitting

 was beginning to get VERY tired of sitting by
 beginning to get very TIRED of sitting by her

 to get very tired OF sitting by her sister
 get very tired of SITTING by her sister on

 very tired of sitting BY her sister on the
 tired of sitting by HER sister on the bank,

 of sitting by her SISTER on the bank, and
 sitting by her sister ON the bank, and of

 by her sister on THE bank, and of having
 her sister on the BANK, and of having nothing

 sister on the bank, AND of having nothing to
 on the bank, and OF having nothing to do:once
 the bank, and of HAVING nothing to do:once or

 bank, and of having NOTHING to do:once or twice
 and of having nothing TO do:once or twice she
 of having nothing to DO:ONCE or twice she had

 having nothing to do:once OR twice she had peeped
 nothing to do:once or TWICE she had peeped into

 to do:once or twice SHE had peeped into the

 If the text to be processed is very long, say, about 100,000 words in length,
concord1.prg is very slow. The following program uses low level file functions
in making concordance for a text. It’s much faster than the previous one.

concord2.prg
1. close all
2. set defa to d:\fox\practice
3. set safe off
4. set talk off
5. clear
6. nothing=''
7. carriage=chr(13)
8. spaces=chr(32)
9. leftcontext=nothing
10. rightcontext=nothing
11. keyword=nothing
12. textinput=fileto('d:\fox\texts\alice.txt')
13. textinput =strtr(textinput,'--',spaces)
14. textinput=strtr(textinput,spaces+spaces,nothing)
15. textinput ='* * * * '+ textinput +' * * * * '

String Manipulation in Tables and Texts 131

16. textinput=strtran(textinput,spaces,carriage)
17. strtofile(textinput,'temp.txt')
18. store fopen('temp.txt') to fhandle
19. concordtext=fcreat('concordance.txt')
20. fseek(fhandle,0)
21. do while not feof(fhandle)
22. for i =1 to 4&&left context
23. word=fgets(fhandle) &&here fgets() gets a word from temp.txt. No

number of bytes is specified in fgets() since it stops before a carriage
return, and all the words in temp.txt have a carriage return after them

24. if i=1
25. position=fseek(fhandle,0,1)
26. else
27. fseek(fhandle,0,1)
28. endif
29. leftcontext=leftcontext+word+spaces
30. endfor
31. kword=fgets(fhandle)+spaces
32. fseek(fhandle,0,1)
33. for i = 1 to 4
34. word=fgets(fhandle)+spaces
35. fseek(fhandle,0,1)
36. rightcontext=rightcontext+word
37. endfor
38. concordline=padl(leftcontext,40,spaces)+upper(kword)+rightcontext
39. fputs(concordtext,concordline)
40. leftcontext=nothing
41. rightcontext=nothing
42. fseek(fhandle,position,0)
43. enddo
44. fclos(concordtext)
45. fclose(fhandle)
46. modify file concordance.txt

In this program, Statement 16 tokenizes the contents of alice.txt stored in
textinput, with a carriage return at the end of each word. Statement 17 puts the
contents of textinput in temp.txt, and statement 18 opens it with the low level file
opening function fopen() and assigns its file handle to fhandle. Statement 19
creates a text file concordtext.txt using the low level file creation function
fcreate(), and assigns its file handle to concordtext. Statement 20 moves the file
pointer to the top of temp.txt. Statements 21—43 form a loop, in which words in
temp.txt is cut one by one with a four-word context on either side. Statements
22—30 produce the left four-word context. Statement 23 cuts a word off temp.txt.

String Manipulation in Tables and Texts 132

Statement 24 checks whether this word is the first word of the left context. If it is,
statement 25 assigns the file pointer to position after the cut is made. Statement
27 shifts the file pointer downwards by the length of the word cut. Statement 29
adds the four words together to form the left four-word context. Statement 31
gets the key word, and statement 32 moves the file pointer downwards by the
length of the key word. Statements 33 to 37 get the right four-word context.
Statement 38 puts the key word 40 spaces from the left of leftcontext followed by
rightcontext. Statement 39 stores this line of concordance in concordtext.txt
created by statement 19. Statements 40 and 41 empty leftcontext and rightcontext
to make room for the next round of processing. Statement 42 shifts the file
pointer back to position, the beginning of the second word in temp, after which
the program goes back to statement 22 to start making a concordance line for the
second word.

4.4.5 Making annotated wordlists

In language teaching we often need to make annotated wordlists, which contain
words, word frequency, range (in how many lessons they occur), in which lesson
they occur and how many times they occur in that lesson. It’s very time
consuming and error-prone to make such wordlists manually. Now we’ll write a
program for making such wordlists, using the 48 text files text1.txt—text48.txt in
d:\fox\texts, assuming they are the 48 lessons of an English course book. The
program is as follows:

annoteword.prg
1. set defa to d:\fox\practice
2. set safe off
3. set talk off
4. clos data
5. clear
6. creat cursor wordlist(word c(25),freq n(6))
7. nothing=''
8. linebreak=chr(10)
9. carriage=chr(13)
10. spaces=chr(32)
11. textinput=nothing
12. wordfield='(word c(25),'
13. freqfield=nothing
14. wordfield='(word c(25), rng n(3),'
15. for i=1 to 48
16. freqfield=freqfield+'L'+alltrim(str(i))+' n(3),'
17. endfor

String Manipulation in Tables and Texts 133

18. annotation='wordinfo m(4))'
19. multifield=wordfield+freqfield+annotation
20. create table lexinfo &multifield
21. for i=1 to 48
22. textname='d:\fox\texts\text'+alltr(str(i))+'.txt'
23. textinput=textinput+filetostr('&textname')+carriage+'~~~~'
24. endfor
25. textinput=chrtr(textinput,',.`[?]_”!:;()*',nothing)
26. textinput=strtran(textinput,”'”,nothing)
27. textinput=strtran(textinput,'-',spaces)
28. textinput=strtr(textinput,spaces,carriage)
29. textinput=prop(textinput)
30. strtofi(textinput,'temp.txt')
31. select 1
32. append from temp.txt sdf for word<>spaces and word<>'~'
33. repl all freq with 1
34. index on word tag word
35. total to temp on word
36. zap
37. appe from temp
38. select 2
39. recordnumber=reccount()
40. for i=1 to 48
41. textchunk=substr(textinput,1,at('~~~~',textinput))&&get a text from

textinput
42. textinput=stuff(textinput,1,at('~~~~',textinput),nothing)&&erase this

text from input
43. strtofile(textchunk,'temp.txt')
44. append from temp.txt sdf for word<>spaces and word<>'~'
45. frequency='L'+alltrim(str(i))
46. replace all &frequency with 1 for recno()>recordnumber
47. index on word tag word
48. total to temp on word
49. zap
50. append from temp
51. replace all rng with rng+1 for &frequency>0
52. recordnumber=reccount()
53. endfor
54. go top
55. do while not eof()
56. freqinfo=nothing
57. for i=1 to 48
58. freqfield='L'+alltrim(str(i))

String Manipulation in Tables and Texts 134

59. if &freqfield>0
60. freqinfo=freqinfo+freqfield+','+alltrim(str(&freqfield))+'; '
61. endif
62. endfor
63. replace wordinfo with 'Range: '+alltrim(str(rng))+'; '+freqinfo
64. freqinfo=nothing
65. skip
66. enddo
67. set relation to word into wordlist
68. copy to annotatedword fields word, a.freq,rng,wordinfo
69. use annotatedword
70. repl all wordinfo with word+'Freq: '+ alltr(str(freq))+'; '+wordinfo
71. brow

This program can be divided into four sections. The first section is between

statement 1 and statement 20, for variable initialization and table creation.
Statement 6 creates a temporary table wordlist that will be automatically deleted
after the program has run. Statements 15—20 create a multiple field table, with a
word field, a range field and 48 fields from L1 to L48 for holding word
occurrences in each of the 48 lessons respectively. The second section is between
statements 21—37. The 48 texts are put into textinput one by one separated with
~~~~. They are subsequently tokenized and turned into a frequencied wordlist. 
The third section is between statements 38—53 for extracting word range and 
word occurrences in individual lessons from textinput. Statement 38 accesses 
table lexinfo. Statement 39 assigns to recordnumber the current position of the 
record pointer in lexinfo. Statements 40—53 get texts from textinput one by one, 
calculate word range and word frequency and put them in their respective field. 
When i =1, text1.txt is cut from textinput and assigned to textchunk, which is 
subsequently tokenized and appended to lexinfo. Statement 45 assigns the string 
literal “L1” to frequency, and statement 46 replaces the field L1 with 1 (using the 
macro operator &) for the newly appended words from text1.txt. Statement 51 
calculates the range of the words in lexinfo. Statement 52 stores the current 
position of the record pointer after the words of text1.txt have been appended and 
totalled. When i = 2 statement 45 assigns “L2” to frequency. Statement 46 
replaces the frequency field L2 with 1 for the newly appended words from 
text2.txt, and statement 51 calculates the range of the words in lexinfo. Statement 
52 assigns the current position of the record pointer to recordnumber. The 
process continues until i equals 48. The fourth section puts word range and word 
frequency in individual lessons in the memo field wordinfo. This section begins 
in statement 54. Statement 56 empties the variable freqinfo. Statements 57—66 
gather word occurrences in individual lessons and put them in freqinfo, which is 
then put in the memo field wordinfo. Statement 64 empties the contents of 
freqinfo for the next word. Statement 67 links lexinfo to wordlist, and statement 



String Manipulation in Tables and Texts 135

68 copies the word field, the rng field and the wordinfo field in lexinfo and the 
freq field in wordlist (a.freq since wordlist is in work area 1 and its alias is a) to a 
new table annotatedword. Statement 70 replaces the memo field wordinfo in 
annotatedword with words, word frequency, word range and their occurrences in 
individual lessons. Figure 4.5 is part of annotatedword. 

 

 
 
Figure 4.5 Part of annotatedword. 
 

The following is the contents of the memo field wordinfo for About, Above, 
Absence, and Absurd: 

About                    Freq: 93; Range: 42; L1,3; L2,1; L3,4; 
L4,1; L5,1; L6,2; L7,6; L8,2; L10,1; L11,4; L12,2; L13,3; L14,3; L15,3; 
L16,1; L18,3; L19,1; L20,1; L23,2; L24,1; L25,1; L26,1; L27,2; L29,1; 
L30,1; L31,4; L32,1; L33,4; L34,2; L35,2; L36,2; L37,3; L38,1; L39,5; 
L40,5; L41,1; L42,3; L44,1; L45,3; L46,2; L47,1; L48,2; 
Above                    Freq: 3; Range: 3; L14,1; L26,1; L43,1; 
Absence                  Freq: 1; Range: 1; L35,1; 
Absurd                   Freq: 2; Range: 2; L10,1; L23,1; 

4.4.6 Computing word sense concentration 

Word sense diversification in the English language is very common. Many 



String Manipulation in Tables and Texts 136 

English words belong to more than one word class and have a set of different 
meanings. Take the word back as an example, according to WordNet, it’s a noun, 
verb, adjective and an adverb, and has 28 different senses. However, for a 
multi-sense word, if one of its meanings occurs much more often, then we say 
this meaning is the sense concentration of the word. A measure for word sense 
concentration is the Herfindahl´s concentration measure, also known as the 
Repeat rate, which is as follows: 
 

2
2

1

1 S

i
i

R f
N =

= ∑ , 

 
where fi is the frequency of sense i of a word in a text or corpus, N the sum of the 
frequencies each of the senses has, and S the number of senses. For example, if a 
word has three different senses, and the frequency of each sense in a corpus is 
respectively 67, 1, 1, then the Repeat rate R is: 
 

R = [672 + 12 + 12]/692 = 0.9433 
 

Generally, the smaller the R, the more diverse the senses.  
In d:\fox\table3 there is a table wordsense containing 165 common English 

words with annotations taken from WordNet of the Princeton University 
(http://www.cogsci.Princeton.Edu/~ wn/); the annotations include word class, 
number of senses and the frequency of each of the senses in the Brown Corpus. 
Word annotations in the table are arranged in the following WordNet format: 

*animal  
The noun animal has 1 sense (first 1 from tagged texts)  
1. (67) animal, animate being, beast, brute, creature, fauna  
The adj animal has 2 senses (first 1 from tagged texts)  
1. (1) animal, carnal, fleshly, sensual  
2. animal -- (of the nature of or characteristic of or derived from an animal or 
animals…) 

The head word occupies a line and begins with an asterisk. The word class and 
the number of senses of the said word class are on the following line, while the 
frequency of a sense belonging to the class is placed on the third line with the 
number placed in brackets. However, if a sense does not exist in the Brown 
Corpus, no number is given on this line, as shown in the second sense of the 
adjective class of animal. In this case we can regard the frequency of this sense 
as 1. 

Now we’ll write a program to extract from wordsense in d:\fox\table3 the 
head words, their word classes, the number of senses each class has, the 
frequency of each of the senses, and compute the Repeat rate for each of the 
words. The program is as follows. 



String Manipulation in Tables and Texts 137

sensefocus.prg 
1. set default to d:\fox\practice 
2. clear 
3. close data 
4. set safety off 
5. create table sensefocus (word c(20),r n(6,4),class c(25),sensefreq 

c(150)) 
6. create table sensetable(wordsense c(250)) 
7. append from d:\fox\table3\wordsense 
8. replace all wordsense with lower(wordsense) 
9. addfreq='' 
10. addwordclass='' 
11. scan for wordsense='*' 
12. targetword=alltrim(wordsense) 
13. skip 
14. do while wordsense<>'*' and recno()<reccount() 
15. if wordsense='the noun' 
16. wordclass='n' 
17. else 
18. if wordsense='the verb' 
19. wordclass='v' 
20. else 
21. if wordsense='the adj' 
22. wordclass='adj' 
23. else 
24. if wordsense='the adv' 
25. wordclass='adv' 
26. endif 
27. endif 
28. endif 
29. endif 
30. sentence=stuff(wordsense,1,at('has ',wordsense)+3,'') 
31. sensenumber=substr(sentence,1,2) 
32. addwordclass=addwordclass+wordclass+rtrim(sensenumber)+',' 
33. skip 
34. do while alltrim(wordsense)<>'the noun' and  alltrim(wordsense)<>'the 

verb' and alltrim(wordsense)<>'the adj' and alltrim(wordsense)<>'the 
adv' and alltrim(wordsense)<>'*' and recno()<=reccount() 

35. if '('$subs(wordsense,1,4) 
36. sentence=stuff(wordsense,1,at('(',wordsense),'') 
37. freq=substr(sentence,1,at(')',sentence)-1) 
38. addfreq=addfreq+freq+'+ ' 
39. else 



String Manipulation in Tables and Texts 138 

40. if '('$left(wordsense,6)=.f.  
41. freq='1' 
42. addfreq=addfreq+freq+'+ ' 
43. endif 
44. endif 
45. skip 
46. enddo 
47. enddo 
48. select 1 
49. addfreq=stuff(addfreq,rat('+',addfreq),1,'')&&remove the trailing + 
50. n=evaluate(addfreq) 
51. sumsquare='('+strtran(addfreq,'+','**2+')+'**2)' 
52. append blan 
53. replace word with targetword 
54. replace r with evaluate(sumsquare)/n**2 
55. replace class with addwordclass  
56. replace sensefreq with addfreq 
57. addwordclass='' 
58. addfreq='' 
59. sele 2 
60. skip -1 
61. endscan 
62. select 1 
63. replace all word with strtran(word,'*','') 
64. replace all word with proper(word) 
65. brow 

 
In this program statements 5—6 create two tables sensefocus and sensetable. 
sensefocus has four fields: word for head words, r for Repeat rate, class for word 
class, and sensefreq, a character field, for sense frequencies in the form of 
3+1+4+1, etc. sensetable has only one field for contents from wordsense in 
d:\fox\table3. Statements 9—10 initialize addfreq and addwordclass. The former 
holds sense frequencies of a word, with each frequency followed by a plus sign; 
the data type is character. The latter stores the different word classes of a word. 
Statements 11—61 scan for the head words and extract related information from 
their annotations. Once the head word is located, statement 12 assigns it to 
targetword, and the program moves between statements 14—47, until a line 
beginning with an asterisk is encountered, and searches for lines containing word 
class, number of senses of the class, and the frequency of senses belonging to the 
class, and extract such information. Statement 30 removes words preceding sense 
number from wordsense in senstable and assigns the remaining to sentence. For 
example, if wordsense contains the sentence the noun has 15 senses, statement 30 
deletes the noun has and assigns the remaining 15 senses to sentence. Statement 



String Manipulation in Tables and Texts 139

31 cuts the number off sentence and assigns it to sensenumber. Note that the 
number is actually a character. Statement 32 stores the types of word class and its 
sense number, adding a comma after each pair of word class and its number. 
Statements 34—46 extract the frequencies of a sense. Statements 35—37 get 
frequencies placed in brackets from wordsense, and statements 39—41 assign 1 
to freq for cases where no frequency is given. Note that the frequency stored in 
freq is of character, too. addfreq in statement 38 and statement 42 pools the 
individual frequencies together, adding a plus sign after each of them. Statement 
49 removes the trailing plus sign of addfreq, and statement 50 gets the sum of 
frequencies by turning the contents stored in addfreq into math operation using 
the evaluate( ) function. Statement 51 prepares for computing the sum of squared 
frequencies. For example, if addfreq contains 22+1+3+2, then this statement 
turns it into (22**2+1**2+3**2+2**2), and statement 54 computes the Repeat 
rate by converting sumsquare into math operation using the evaluate( ) function. 
Figure 4.6 is part of sensfocus. 
 

 

Figure 4.6 Part of sensfocus. 



String Manipulation in Tables and Texts 140 

Exercises 

1. Use wordlist in d:\fox\table3 and copy it to d:\fox\practice\test. Enter a 
command in the command window to right justify the words, with their right end 
25 characters from the leftmost position of the field and output the new contents 
to temp.txt. 
 
2. In d:\fox\table3 there is a table wronglen. In the wlength field the values of 
word length are all wrong. For example, the length of aback is given as 6. There 
must be an unseen character in the word field. Identify the character, remove it 
and then get the correct word length. 
 
3. Write a short program and use the set relation command to put the word field, 
rng field, wordinfo field in annotatedword created in 4.4.5 and the wlength field 
in aliceword created in 2.4.1 to a table called temp. 
 
4. Write a short program to centre-justify To Autumn (poem.txt in d:\fox\texts) 
using the function padc(), putting every line of the poem in the centre of a line 80 
characters in length. 
 
5. Write a program to remove CHAPTER I, CHAPTER II, CHAPTER III… in 
alice.txt and output the result to d:\fox\practice\temp.txt. 
 
6. Use postable in d:\fox\table3 and copy it to d:\fox\practive\test. Use test to do 
the following by entering commands in the command window: 
a. Shift the POS tags to the right of the words and capitalize the first letter of 

the words. 
b. Remove the words in test, keeping only the POS tags and combine the 

identical POS tags. 
 

7. According to Kennedy (1998), nouns in the Brown Corpus and the LOB 
Corpus account for 26.8% and 25.2% of the total word tokens respectively. In 
d:\fox\table1 there are 50 tables from bncst1.dbf to bncst50.dbf containing 50 
wordlists with POS tags. These wordlists are made from 50 2000-word text 
samples randomly drawn from the BNC spoken text section. Write a program to 
combine all the 50 tables together, and then remove the words, keeping only the 
POS tags, and calculate the proportion of nouns. 
 
8. In d:\fox\texts there is a file multiplication.txt containing the multiplication 
table without the products. Write a program using the evaluate() function in it 
and calculate the results and output the new multiplication table in the following 
format: 
1 X 1 = 1 



String Manipulation in Tables and Texts 141

1 X 2 = 2 
… 
 
9. Write a program using the low level file functions to create a text file temp.txt 
in d:\fox\practice and put in it all the 48 texts in d:\fox\texts, adding section titles 
TEXT 1, TEXT 2, TEXT 3…in the middle of a new line on top of each text chunks 
in temp.txt. 
 
10. In d:\fox\texts there is text1 in the XML text format (text1.xml). Open it by 
typing modify file d:\fox\texts\text1.xml in the command window, examine it 
carefully and then write a program to remove the XML codes and non-textual 
characters, tokenize it and produce a wordlist for it. 



5 Arrays, Procedures and User-defined 
Functions 

In this chapter we’ll learn how to create arrays, procedures and user-defined 
functions (UDF) and use them in programs. An array is actually a variable with 
data values arranged in rows and columns stored in it. So arrays can be regarded 
as tables without grids and field names; but unlike tables, which are stored on the 
hard disc, arrays are stored in memory, and like variables as soon as Foxpro is 
closed, the arrays created during a Foxpro session no longer exist. Procedures are 
sub-programs put at the end of the main program for performing repetitive tasks, 
and can be called in the main program when needed. This reduces program 
length and makes it more readable. User-defined functions, as the name suggests, 
are functions designed and written by the user for specific purposes. Although 
there are quite a lot of built-in functions provided by Foxpro and we have learned 
many of them, there are occasions when a function is needed for a special task 
but there are no such built-in functions in Foxpro. The creation and use of arrays, 
procedures and user-defined functions can make our program more flexible, 
concise and powerful. 

5.1 Commands and Functions for Arrays 

Like a table, an array has rows and columns, and data stored in an array are 
called array elements. If an array has 3,000 rows and 4 columns, the number of 
elements it contains is 12,000. For Foxpro 6.0, the total number of elements can’t 
exceed 65,000. For higher versions the maximum number of elements is two 
gigabytes. The following commands and functions are for the creation and 
manipulation of arrays. 
 
 declare arrayname1 (rows [, columns]) [, arrayname2 (rows [, 
columns])] ..This command creates specified number of arrays with specified 
number of rows and columns. To create three arrays called array1, array2 and 
array3, with 20 rows and 4 columns, 25 rows and 3 columns and 5 rows and 6 
columns respectively, type: 
 
 declare array1(20,4), array2(25,3),array3(5,6) ↵ 
 
The array elements can be referred to by the row and column they are in. For 
example, array1[1,1] is the element of array1 in row 1 and column 1; array1[2,4] 
is the element in row 2 and column 4. We can also use the round brackets instead 
of the square brackets when referring to array elements, for example, array(1,1), 
array(1,2) etc. Values can be assigned to array elements by specifying their row 



Arrays, Procedures and User-defined Functions 143

and column numbers. 
 
 array1[1,1]='Foxpro' ↵ 
 array1[1,2]='array' ↵ 
 array1[2,1]='lab' ↵ 
 array1[2,2]='practice' ↵ 
 ?array1[1,1] ↵ 
 Foxpro 
 
 ?array1[1,2] ↵ 
 Array 
 
 ?array1[2,1] ↵ 
 lab 
 
 ?array1[2,2] ↵ 
 practice 
 
 display memory like | [arrayname] [variablename] |   This command is 
used for checking the contents of an array or a variable. 
 
 display memory like array1 ↵ 
 ARRAY1    Pub     A    

( 1, 1)  C  "Foxpro" 
( 1, 2)  C  "array" 
( 1, 3)  L  .F. 
( 1, 4)  L  .F. 
( 2, 1)  C  "lab" 
( 2, 2)  C  "practice" 
( 2, 3)  L  .F. 
( 2, 4)  L  .F. 
 

In the first row of the result, ARRAY1 is the name of the variable (remember 
arrays are variables?). pub means the property of this variable is public and can 
be accessed anywhere within the program it’s created. A shows that ARRAY1 is 
an array. In the following rows, (1, 1), (1, 2), (1, 3) etc are row 1 and column1, 
row 1 and column 2, row 3 and column 3 etc. Currently only array1[1,1], 
array1[1,2], array1[2,1] and array1[2,2] have data values, and the data type is C, 
meaning character; the rest store the string .F., which means empty, and the data 
type is logical. 
 

 phrase='Foxpro arrays' ↵ 



Arrays, Procedures and User-defined Functions 144 

 display memory like phrase ↵ 
 PHRASE          Priv       C   “Foxpro arrays” 
 

The result means the variable name is phrase, whose property is private, and the 
type of data is C, meaning character, and its value is Foxpro arrays. 
 

dimension arrayname1(rows [, columns]) [, arrayname2(rows [,columns])] ... 
This command is the same as the declare command. To create three arrays called 
array1, array2 and array3 with 3 rows and 5 columns each. 

 
 dimension array1(3,5),array2(3,5),array3(3,5) ↵ 
 

afields(arrayname | [, workarea] [, 'alias']) |  This command measures the 
number of fields of a table, and puts the names of the fields, the type of data the 
fields hold, their width and so on in an array arrayname. workarea is the work 
area where the table is open, and alias is the alias of the table. 

 
use d:\fox\table3\wordlist in 2 alias w 
?afields(fieldinfo,2) ↵ 
5 
 
?afields(fieldinfo, 'w') ↵ 
5 
 
?fieldinfo(1,1) ↵ 
WORD 
 
go bottom ↵ 
a=fieldinfo(1,1) ↵ 
?&a ↵ 
Zzzzzing 
 
go top ↵ 
?&a ↵ 
A 
 
go 12 ↵ 
?&a ↵ 
Abate 
 
?fieldinfo(1,2) ↵ 
C 



Arrays, Procedures and User-defined Functions 145

?fieldinfo(1,3) ↵ 
25 
 
?fieldinfo(2,1) ↵ 
FREQ 
 
? fieldinfo(2,2) ↵ 
N 
?fieldinfo(2,3) ↵ 
8 
 
?fieldinfo(3,1) ↵ 
RNG 
 
?fieldinfo(3,2) ↵ 
N 
 
?fieldinfo(3,3) ↵ 
5 
 
?fieldinfo(4,1) ↵ 
WLENGTH 
 
?fieldinfo(4,2) ↵ 
N 
 
?fieldinfo(4,3) ↵ 
4 
 
?fieldinfo(5,1) ↵ 
NOTE 
 
?fieldinfo(5,2) ↵ 
M 
 
?fieldinfo(5,3) ↵ 
4 

 
 copy to array arrayname [field [fieldname1] [, fieldname2…]] [for 
condition]  This command copies the specified contents of a table to an array. 
To copy the entire contents of spgrowth in d:\fox\table3 to an array called 
sparray. 



Arrays, Procedures and User-defined Functions 146 

use d:\fox\table3\spgrowth ↵ 
copy to array sparray ↵ 

 
The above statements copy the entire contents of spgrowth to the array sparray. 
 

alen(arrayname)  This function measures the total number of elements of 
an array. The total number of elements of an array is the number of its rows 
multiplied by the number of its columns. 

 
?alen(sparray) ↵ 
2000 
 

Please note that once an array is created by the declare command, dimension 
command or copy to array command, the number of elements of the array remain 
fixed throughout the Foxpro session. In d:\fox\table3 there is a wordlist table 
spwordlist containing 10,384 words, with four fields respectively holding words, 
frequency, range and length. Type the following; do not press enter until all the 
statements have been entered and highlighted: 
 

use d:\fox\table3\spwordlist 
copy to array sparray  
?alen(sparray) 
use d:\fox\table3\spgrowth 
copy to array sparray 
?alen(sparray) 
 

The results are both 41,536. 
 

copy structure to tablename  This command copies the structure of an 
open table to a new table tablename. 

 
use d:\fox\table3\wordlist ↵ 
copy structure to temp ↵ 
use temp ↵ 
brow ↵ 

 
The above statements create a new empty table temp with the same structure of 
wordlist. 
 

append from array arrayname [for condition] [fields fieldnames]  This 
command appends the contents of an array to a table. 

 



Arrays, Procedures and User-defined Functions 147

use d:\fox\table3\spgrowth ↵ 
copy structure to temp ↵ 
copy to array sparray 
use temp ↵ 
append from array sparray ↵ 
brow ↵ 

 
scatter [fields fieldnames] | [to arrayname] [memvar] [name variablename] 

|  This command copies the current record in specified fields of a table to an 
array or a variable. memvar is a Foxpro system variable. To copy the current 
record to a non-system variable, name must be used before the variable. fields 
fieldnames specifies the fields of the record to copy. To copy all the fields of a 
record in a table, omit the fields fieldnames option. The scatter command is often 
used with the following gather command. 

 
gather | [from arrayname] [memvar] [name variablename] | [fields 

fieldnames]  This command appends to a table the record of another table put to 
an array or a variable by the scatter command. fields fieldnames specifies the 
fields to which the records are appended. To append the records to all the fields, 
omit fields fieldnames. If the from arrayname option is used, the field names of 
the two tables don’t have to be the same but the data types must be the same. For 
the memvar and name variablenames options, the fields of the two tables must be 
the same, or nothing will be appended. 

 
use d:\fox\table3\wordlist ↵ 
copy structure to temp ↵ 
scatter to testarray ↵ 
use temp ↵ 
append blank ↵ 
gather from testarray ↵ 
brow ↵ 
use d:\fox\table3\wordlist ↵ 
skip ↵ 
scatter memvar ↵ 
use temp ↵ 
append blank ↵ 
gather memvar ↵ 
brow ↵ 
use d:\fox\table3\wordlist ↵ 
skip ↵ 
scatter name fld ↵ 



Arrays, Procedures and User-defined Functions 148 

use temp ↵ 
append blank ↵ 
gather name fld ↵ 
brow ↵ 

 
acopy(sourcearrayname, targetarrayname)  This function copies the 

contents of an array to another array. 
 

use d:\fox\table3\spgrowth ↵ 
copy to array array1 ↵ 
acopy(array1,array2) ↵ 
?alen(array1) ↵ 
2000 
 
?alen(array2) ↵ 
2000 

 
adel(arrayname,elementnumber [, 2])  This function deletes an element 

specified by elementnumber of an array. If 2 is used, then the entire column 
specified by elementnumber is deleted. 

 
use d:\fox\table3\wordlist ↵ 
copy to temp for recn()<2000 ↵ 
use temp ↵ 
copy to array testarray ↵ 
?testarray(1,1) ↵ 
A 
 
adel(testarray,1) ↵ 
?testarray(1,1) ↵ 
A.c. 
 
adel(testarray,1,2) ↵ 
?testarray(1,1) ↵ 
32 

 
adel(testarray,1,2) deletes the first column holding words in testarray, and 
testarray(1,1) yields 32, which is the frequency of A.c. 
 

ascan(arrayname, string)  This function searches an array for string. If the 
search is successful, the element number of the string in the array is returned, 
otherwise 0 is returned. For this function to work properly, the command set 



Arrays, Procedures and User-defined Functions 149

exact on should be used, otherwise if we search for work, the function may turn 
out the word workable. 

 
set exact on ↵ 
use d:\fox\table3\wordlist ↵ 
copy to temp for recn()<2000 ↵ 
use temp ↵ 
copy to array testarray field word,freq ↵ 
?ascan(testarray,’Allow’) ↵ 
1213 
 
?ascan(testarray,’Aallow’) ↵ 
0 

 
adir(arrayname [, files])  This function puts file names of the current folder 

to an array, with their size, attribute and so on. The wild card * can be used in 
this function. This command is very useful for inputting the file names of a folder 
to a table. 

 
set defa to d:\fox\texts ↵ 
adir(filearray, '*.txt') ↵ 
creat table d:\fox\practice\filelist(fname c(10),bytes c(10),dates c(10),time 
c(10),attri c(10)) ↵ 
append from array filearray ↵ 
brow ↵ 

 
The above statements first put all the files with the txt extension to an array 
called filearray, then append the file names to a five-field table called filelist. 

To put all the table names in d:\fox\table2 to an array called allfile and then 
append the table names to filelist, type: 

 
set defa to d:\fox\table2 
adir(allfile) ↵ 
use d:\fox\practice\filelist ↵ 
zap ↵ 
append from array allfile↵ 
brow ↵ 
 

asort(arrayname [, columnnumber [, numbertosort [, sortorder]]])  This 
command sorts the elements of an array. columnnumber specifies which column 
to sort. numbertosort specifies how many of the elements in the column to sort; 
the default setting is 0, which means sorting the entire column. sortorder has two 



Arrays, Procedures and User-defined Functions 150 

settings, 0, which is the default setting, and any positive integer larger than 0. 
The former sorts in ascending order and the latter in descending order. If 
numbertosort and sortorder are set to 0, they can both be omitted. However, if 
sortorder is set to a positive integer, numbertosort can’t be omitted. If arrayname 
is used alone, all the elements in the first column are sorted in ascending order. 
To sort all the elements of the second column in descending order, change 
columnnuber to 2, numbertosort to 0, and sortorder to any positive integer, say 5. 
In d:\fox\table3 there is a table sortarray, which contain the following data: 
 A 5 
 B 4 
 C 3 
 D 2 
 E 1 
Now copy the table to temp and type in the command window: 
 

use temp ↵ 
copy to array test ↵  
asort(test,2) ↵ 
zap ↵ 
appe from array test ↵ 
brow ↵ 

 
The result is as follows: 

E  1 
D  2 
C  3 
B  4 
A  5 

Now type: 
 

copy to array test ↵ 
asort(test,1,3) ↵ 
zap ↵ 
appe from array test ↵ 
brow ↵ 

 
The result is as follows: 

C  3 
D  2 
E  1 
B  4 
A  5 



Arrays, Procedures and User-defined Functions 151

Now type: 
 

copy to array test ↵ 
asort(test,1,0,1) ↵ 
zap ↵ 
appe from array test ↵ 
brow ↵ 

 
The result is as follows: 

E  1 
D  2 
C  3 
B  4 
A  5 

5.2 Procedures 

In Chapter 2 we wrote three programs for lexical comparison between Alice’s 
Adventures in Wonderland and Through the Looking-glass. The first two 
programs are almost the same except for a couple of statements. As a matter of 
fact, we can combine the three programs together and put the two programs that 
practically do the same thing into a sub-program, which can be called when it’s 
needed. Sub-programs like this are called procedures, which are placed at the end 
of the main program. The form of a procedure is as follows: 
 

procedure procedurename 
[private variablelist] 
[public variablelist] 
statements 
return 
[endproc] 

 
Since procedures are sub-programs, we should specify whether the variables in a 
procedure are public or private; that is, whether the variables in the procedure are 
recognized throughout the program, both main and sub, or only within the 
procedure. Suppose we want to write a procedure called cleantext, with three 
public variables a1, a2, a3 and two private variables b1, b2, the initial part of the 
procedure is like the following: 
 

procedure cleantext 
public a1, a2, a3 
private b1, b2 



Arrays, Procedures and User-defined Functions 152 

However, unless otherwise specified in the procedure, the variables in the main 
program are public, recognized both in the main program and in the procedure.  

To call a procedure in the main program, put the following command in the 
main program where the procedure is needed: 

 
do procedurename 

 
Now we’ll combine the three programs in 2.5.1 for lexical comparison between 
alice.txt and lglass.txt. 
 

aliceglass.prg 
1. set default to d:\fox\practice 
2. set safety off 
3. close data 
4. create table awordlist (word c(25),freq n(10),wlength n(4)) 
5. create table lwordlist (word c(25),freq n(10),wlength n(4)) 
6. create table aliceglass (word c(25),freq n(12,5)) 
7. textinput=filetostr('d:\fox\texts\alice.txt') 
8. do tokenizer 
9. select 1 
10. append from temp 
11. textinput=filetostr('d:\fox\texts\lglass.txt') 
12. do tokenizer 
13. select 2 
14. append from temp 
15. select 3 
16. append from awordlist 
17. replace all freq with freq*100000 
18. append from lwordlist 
19. index on word tag word 
20. total to temp on word 
21. zap 
22. append from temp 
23. copy to sharedw for mod(freq,100000)>0 and freq>100000 
24. copy to aliceonly for mod(freq,100000)=0 
25. copy to lglassonly for freq<100000 
26. use aliceonly 
27. replace all freq with freq/100000 
28. use sharedw 
29. replace all freq with freq/100000 
30. procedure tokenizer 
31. create table temp(word c(25),freq n(10),wlength n(4)) 
32. nothing='' 



Arrays, Procedures and User-defined Functions 153

33. spaces=chr(32) 
34. carriage=chr(13) 
35. textinput=strtran(textinput,'-',spaces) 
36. textinput=strtran(textinput,spaces,carriage) 
37. strtofile(textinput,'temp.txt') 
38. append from temp.txt sdf 
39. replace all word with chrtran(word,',.`[?]_”!:;()*',nothing) 
40. replace all word with strtran(word,”'”,nothing) 
41. delete all for isblank(word)=.t. 
42. pack 
43. strtofile(textinput,'temp.txt') 
44. replace all word with prop(word) 
45. replace all freq with 1 
46. index on word tag word 
47. total to temp1 on word 
48. zap 
49. append from temp1 
50. replace all wlength with len(alltrim(word)) 
51. use 
52. return 

 
In this program, the procedure called tokenizer is between statements 30 and 52, 
and it’s called twice by statement 8 and statement 12 in the main program. After 
the procedure completes its task, the program goes back to the main program to 
the statement next to the statement that calls the procedure. 

The way to call procedures can be used for a program to call another program. 
For example, we can turn the above procedure into a stand-alone program with 
the same name and call it in another program the same way as procedures are 
called. 

5.3 User-defined Functions 

Foxpro has many built-in functions, but these functions can’t always meet the 
needs of the user. When we need a function that Foxpro doesn’t have, we can 
create the function ourselves. Such functions are called user-defined functions 
(UDF). User-defined functions are similar to procedures in that they are both 
sub-programs put at the end of the main program and can be called any time they 
are needed. The difference lies in the way they are created, called and how results 
are passed to the main program. The following commands and statements are for 
function creation: 
 

function functionname 



Arrays, Procedures and User-defined Functions 154 

parameters [parameter1] [, parameter2]… 
statements 
return [value] 
[endfunc] 

 
User-defined functions have the following two settings, normally put at the initial 
section of the main program that uses user-defined functions. 
 

set udfparms to value 
 
In this setting, a user-defined function can manipulate variables of the main 
program but their original values in the main program can’t be changed. This is 
the default setting. 
 

set udfparms to reference 
 
In this setting a user-defined function can manipulate variables of the main 
program and their original values can be changed. 

The way to use user-defined functions is the same as we use Foxpro built-in 
functions. Suppose we have created a function called counta() for counting the 
number of the letter A in a text stored in a variable called textinput, then 
counta(textinput) performs this task.  

Now we’ll write a program to make 48 wordlists for the 48 texts in 
d:\fox\texts and store them in 48 tables called text1, text2…text48. A user-defined 
function tokenize is used to tokenize these texts and remove punctuation marks, 
numbers and other non-word strings. The program is as follows: 

 
multiwordlist.prg 
1. set defa to d:\fox\practice 
2. set udfparms to reference 
3. set safe off 
4. set talk off 
5. close data 
6. create cursor wordtable(word c(25),freq n(6),wlength n(4)) 
7. nothing='' 
8. carriage=chr(13) 
9. spaces=chr(32) 
10. for i=1 to 48 
11. texts='d:\fox\texts\text'+alltr(str(i))+'.txt' 
12. textinput=filetos('&texts') 
13. tokenize (textinput) 
14. strtof(textinput,'temp.txt') 
15. selec 1 



Arrays, Procedures and User-defined Functions 155

16. append from temp.txt sdf for word<>spaces 
17. replace all freq with 1 
18. index on word tag word 
19. total to temp on word 
20. zap 
21. appen from temp 
22. replace all wlength with len(alltrim(word)) 
23. copy to 'text'+alltr(str(i)) 
24. zap 
25. endfor 
26. function tokenize 
27. parameters strings 
28. strings=chrtr(strings,',.;:`”!?-()[]0123456789*',spaces) 
29. strings=strtr(strings,”'”,nothing) 
30. strings=strtran(strings,spaces,carriage) 
31. strings=prop(strings) 
32. return 

 
In this program, statement 13 calls the user-defined function tokenize() to 
tokenize textinput. Since we want the function to pass textinput back to the main 
program with changed value, i.e. tokenized with numbers and non-word strings 
removed etc, udfparms is set to reference in statement 2. The function is between 
statements 26—32. Statement 26 in the function declares the parameter string, 
which stands for textinput. 

If instead of a variable, a function is called in the main program to deal with 
a text, a table or a field of a table, the name of the text, table or field should be 
put between two quotes, either single or double. In the function part of the 
program, after the declaration of parameters standing for a table or a field of a 
table created or used in the main program, the macro operator & must be put 
before the parameters when referring to the table or field. Look at the functions 
used in the following two programs demonstrating user-defined functions for 
dealing with texts, tables and fields of a table. The function makeword()in the 
first program turns a text into a frequencied wordlist, while the function 
wordlength() in the second program computes word length of a table. Note the 
use of the macro operator & in wordlength(). 

 
functext.prg 
1. set defa to d:\fox\practice 
2. set safe off 
3. set udfpar to reference 
4. clos data 
5. makeword('d:\fox\texts\text1.txt') 
6. copy to text1 



Arrays, Procedures and User-defined Functions 156 

7. makeword('d:\fox\texts\text2.txt') 
8. copy to text2 
9. makeword('d:\fox\texts\text3.txt') 
10. copy to text3 
11. func makeword 
12. parameters text 
13. creat cursor wordtable(word c(25),freq n(5),wlength n(4)) 
14. nothing='' 
15. carriage=chr(13) 
16. spaces=chr(32) 
17. textinput=filetos(text) 
18. textinput=chrtr(textinput,',.:;`”!?-()[]0123456789*',spaces) 
19. textinput =strtr(textinput,”'”,nothing) 
20. textinput =strtran(textinput,spaces,carriage) 
21. textinput =prop(textinput) 
22. strtof(textinput,'temp.txt') 
23. appe from temp.txt sdf for word<>spaces 
24. repl all word with prop(word) 
25. repl all freq with 1 
26. inde on word tag word 
27. tota to temp on word 
28. zap 
29. appe from temp 
30. return 
 
funcfield.prg 
1. set defa to d:\fox\practice 
2. set safe off 
3. set udfpar to reference 
4. clos data 
5. wordlength('text1','word','wlength') 
6. wordlength('text2','word','wlength') 
7. wordlength('text3','word','wlength') 
8. func wordlength 
9. parameters tables,words,length 
10. use &tables 
11. repl all &length with len(alltr(&words)) 
12. return 
 

Next, we’ll write a program using a function to compute 

)!623(
!4
!15

−

. 

factorial.prg 



Arrays, Procedures and User-defined Functions 157

1. ?factorial(15)/factorial(4)/factorial (23-6) 
2. function factorial 
3. parameters n 
4. s=1 
5. for i=1 to n 
6. s=s*i 
7. endfo 
8. return s 

 
The use of the function factorial() makes the program much shorter than without 
it, in which case three for…endfor loops have to be used respectively for 15!, 4! 
and (23−6)!. Statement 3 in the function declares the parameter n, which stands 
respectively for 15, 4 and 23−6. Since there is no variable of the main program 
represented in the function and s in the function is the result respectively of 
factorial(15), factorial(4) and factorial(23-6), udfparms is the default setting, and 
the value of s must be returned to the main program. 

5.4 The do case command and iff() Function 

The do case command is very important in setting multiple conditions for 
directing program flow, while the iff() function has the function of two if 
commands. The do case command is in the following form: 
 

do case 
case condition1 
statements 
case condition2 
statements 
case condition3 
statements 
… … 
endcase 
 

The statements under the condition evaluated as .T. are carried out. docase.prg 
demonstrates the use of the do case command. The program picks out words in 
wordlist in d:\fox\table3 ending in ability, ism, ment, ness, ship, sion, tion with 
their frequency and puts them in a text file in two columns in descending order of 
frequency, with the frequency column right justified. 
 

docase.prg 
1. set defa to d:\fox\practice 
2. set safe off 



Arrays, Procedures and User-defined Functions 158 

3. clos data 
4. set talk off 
5. clear 
6. carriage=chr(13) 
7. wordend1=padr('__BILITY',28)+'FREQUENCY'+ carriage 
8. wordend2=padr('__ISM',28)+'FREQUENCY'+ carriage 
9. wordend3=padr('__MENT',28)+'FREQUENCY'+ carriage 
10. wordend4=padr('__NESS',28)+'FREQUENCY'+ carriage 
11. wordend5=padr('__SHIP',28)+'FREQUENCY'+ carriage 
12. wordend6=padr('__SION',28)+'FREQUENCY'+ carriage 
13. wordend7=padr('__TION',28)+'FREQUENCY'+ carriage 
14. number1=0 
15. number2=0 
16. number3=0 
17. number4=0 
18. number5=0 
19. number6=0 
20. number7=0 
21. use d:\fox\table3\wordlist 
22. index on freq tag freq desc 
23. copy to temp 
24. use temp 
25. do while not eof() 
26. do case 
27. case right(rtrim(word),6)='bility' 
28. number1=number1+1 
29. wordend1=wordend1+padr(rtrim(word),24)+padl(rtrim(str(freq)),10)+ 

carriage 
30. case right(rtrim(word),3)='ism' 
31. number2=number2+1 
32. wordend2=wordend2+padr(rtrim(word),24)+padl(rtrim(str(freq)),10)+ 

carriage 
33. case right(rtrim(word),4)='ment' 
34. number3=number3+1 
35. wordend3=wordend3+padr(rtrim(word),24)+padl(rtrim(str(freq)),10)+ 

carriage 
36. case right(rtrim(word),4)='ness' 
37. number4=number4+1 
38. wordend4=wordend4+padr(rtrim(word),24)+padl(rtrim(str(freq)),10)+ 

carriage 
39. case right(rtrim(word),4)='ship' 
40. number5=number5+1 
41. wordend5=wordend5+padr(rtrim(word),24)+padl(rtrim(str(freq)),10)+ 



Arrays, Procedures and User-defined Functions 159

carriage 
42. case right(rtrim(word),4)='sion' 
43. number6=number6+1 
44. wordend6=wordend6+padr(rtrim(word),24)+padl(rtrim(str(freq)),10)+ 

carriage 
45. case right(rtrim(word),4)='tion' 
46. number7=number7+1 
47. wordend7=wordend7+padr(rtrim(word),24)+padl(rtrim(str(freq)),10)+ 

carriage 
48. endcase 
49. skip 
50. enddo 
51. wordends=wordend1+'NUMBER OF __BILITY: '+; 

ltrim(str(number1))+carriage+carriage+wordend2+'NUMBER OF; 
__ISM: '+ltrim(str(number2))+carriage+carriage+wordend3+; 
'NUMBER OF __MENT:'+ltrim(str(number3))+carriage+carriage+; 
wordend4+'NUMBER OF__NESS: '+ltrim(str(number4))+carriage+; 
carriage+wordend5+'NUMBER OF__SHIP: '+ltrim(str(number5))+; 
carriage+carriage+wordend6+'NUMBER  OF __SION: '+; 
ltrim(str(number6))+carriage+carriage+wordend7+'NUMBER OF; 
__TION: '+ltrim(str(number7))+carriage+carriage 

52. wordends=wordends+'TOTAL NUMBER OF WORDS WITH; 
ABOVE ENDINGS:'+ltrim(str(number1+number2+number3+; 
number4+number5+number6+number7)) 

53. strtofi(wordends,'temp.txt') 
54. modi file temp.txt 

 
In this program statements 6—20 initialize variables for storing words with 
specified endings and their frequency respectively. Statements 22—23 arrange 
the frequency field in descending order and then copy wordlist to temp. 
Statements 25—50 create a loop, in which the record pointer moves down from 
the top to the bottom of temp, picking out along the way words satisfying the 
conditions set by the case statements between do case and endcase. If a word 
fails to satisfy any of the cases, the record pointer moves to the next word, which 
is evaluated by the cases again. After the record pointer reaches the bottom of 
temp, statements 51 and 52 put all the words with the specified endings and their 
frequency together, with their subtotal and a blank line between each type of 
ending and the grand total at the end. Statement 51 is too long and put in seven 
lines, with semi-colons at the end of each line. In Foxpro, a long statement can be 
broken into several lines with semi-colons plus carriage returns. The result is 
stored in temp.txt, which is opened by statement 54. The following is part of the 
result: 

__BILITY FREQUENCY



Arrays, Procedures and User-defined Functions 160 

Responsibility 138 
Ability 107 
Possibility 91 
Liability 58 
Availability 19 
Probability 18 
Stability 17 
Profitability 14 
Disability 14 
Flexibility 13 
Inability 11 
Reliability 10 
Visibility 9 
Capability 9 
Accountability 9 
Compatibility 8 
Credibility 7 
Vulnerability 6 
Permeability 6 
Viability 5 
Suitability 5 
Feasibility 5 
Accessibility 5 
Acceptability 5 
Mobility 4 
… … 
NUMBER OF __BILITY: 72 

 
iif(condition, statement1, statement2)  This function evaluates statement1 

and statement2 under condition; if statement1 is .T. under condition, it’s carried 
out, else statement2 is carried out. 

 
a = 9 ↵ 
?iif(a<9,'Correct', 'Wrong') ↵ 
Wrong 

5.5 Some Commands and Functions for Miscellaneous Purposes 

In this section we’ll look at some commands and functions for miscellaneous 
purposes. These commands and functions are for creating program-generated 
message to the screen; suspending and resuming a program; checking for work 



Arrays, Procedures and User-defined Functions 161

area, table name and field name; and getting the current time and date generated 
by the computer clock, etc. 
 

@rownnumber, columnnumber [say contents] [get variable]  This 
command outputs contents or variable to the screen at the specified position. 

 
@10,50 say 4/24 ↵ 
 

The result 0.17 is outputted to the screen at the 10th row and 50th column. 
 

@20,10 say ‘Tokenizing the text now. Please wait…’ 
 
The message Tokenizing the text now. Please wait… is outputted to the screen at 
row 20 and column 10. 
  

a=log(80) ↵ 
@10,70 say 'The result is: ' get a ↵ 

 
The result is: 4.38 is outputted to the screen at row 10 and column 70. 
 

wait message window at rownumber, columnnumber timeout seconds  
This command outputs message to a message box at the specified position. The 
message box disappears after the specified time. 

 
wait 'Processing the text now. Please wait....' window at 15,40 timeout 4 ↵ 

 
The message appears in a message box at row 15 and column 40 on the screen, 
and stays there for 4 seconds. 
 

suspend  This command is used for temporarily stops a running program at 
the place where the command is issued, often used for checking the results 
produced so far or for debugging purposes. 

 
resume  This command restarts a program from where it’s temporarily 

stopped by the suspend command. 
 

for i=1 to 100 
?i 
if i=40 
suspend 
endif 
endfor 

 



Arrays, Procedures and User-defined Functions 162 

When the value of i reaches 40, the computer stops outputting the value of i to 
the screen. Now type: 
 

resume ↵ 
 
outputting of i to the screen resumes. 
 

dbf()  This function returns the name of an open table and its path, often 
used in procedures and functions. 

 
close data ↵ 
use d:\fox\table3\wordlist ↵ 
?dbf() ↵ 
D:\FOX\TABLE3\WORDLIST.DBF 

 
field(n)  This function returns the name of the nth field of a table. 
 

close data ↵ 
use d:\fox\table3\wordlist ↵ 
?field(1) ↵ 
WORD  
 
?field(2) ↵ 
FREQ  

 
time()  This function outputs the current time of the computer clock. 
 

?time() 
 
This returns the current time of the computer clock. We can also assign the value 
of time() to a variable. 
 

date()  This function outputs the current date set in the computer. 
 

?date() 
 
This returns the current date of the computer clock. Like time(), we can assign it 
to a variable. 
 

string function ‘vn’  This command continuously cuts n characters from the 
left of string and puts them to the screen with carriage return until there are no 
more characters remaining in string. If there are fewer than n characters left in 



Arrays, Procedures and User-defined Functions 163

string, the remaining characters are put to the screen. 
 
a='Linguistics' ↵ 
?a function 'v1' ↵ 
L 
i 
n 
g 
u 
i 
s 
t 
i 
c 
s 

 
?a function 'v5' ↵ 
Lingu 
istic 
s 

 
set alternate to filename  This command creates a file that captures any 

output directed to the screen. It must be used with the following command: 
 
set alternate on  The command opens the file created with set alternate to 

so that it can receive the output directed to the screen. 
 

set alternate to test.txt ↵ 
set alternate on ↵ 
a='Linguistics' ↵ 
?a function 'v1' ↵ 

 
To view the contents of test.txt, type: 
 

close all ↵ 
modify file test.txt ↵ 

 
difference(string1,string2)  This function compares the sound patterns of 

string1 with string2 and the return value is a similarity scale from 1 to 4, with 4 
having the highest similarity. It mainly compares consonants; it’s not case 
sensitive and ignores non-alphabetic characters within string1 and string2. 

 



Arrays, Procedures and User-defined Functions 164 

?difference('foxpro', 'f') ↵ 
1 
 
?difference('foxpro', 'fox') ↵ 
2 
 
?difference('foxpro', 'foxp') ↵ 
3 
 
?difference('foxpro', 'foxpr') ↵ 
4 

 
soundex(string)  This function evaluates the sound patterns, mainly that of 

consonants, of a string and returns the pattern in the form of the first letter of the 
string and a number. It can be used to extract words with similar pronunciation 
from a text or a wordlist. This function is not case sensitive and ignores 
non-alphabetic characters including spaces within the string. 

 
?soundex('foxpro') ↵ 
F216 
 
?soundex('FoxPro') ↵ 
F216 
 
?soundex('fox234_p?r@o') ↵ 
F216 
 
?soundex('foxpr') ↵ 
F216 
 
?soundex('foxp') ↵ 
F210 
 
?soundex('fox') ↵ 
F200 
 
?soundex('fo') ↵ 
F000 
 
?soundex('f') ↵ 
F000 

 



Arrays, Procedures and User-defined Functions 165

Now use wordlist and enter the following: 
 

copy to temp for soundex(word)=soundex('cut') ↵ 
 

Words with similar sound patterns are copied to temp. 
 

run [externalcommand] [externalprogram]  This function executes external 
commands or programs inside Foxpro. Now use awordlist in d:\fox\practice and 
copy it to d:\practice\temp and enter the following: 

 
set defa to d:\fox\practice ↵ 
run rename temp.dbf testrun.dbf ↵ 

 
The above statement executes the DOS rename command from within Foxpro, 
and temp.dbf is renamed testrun.dbf. The exclamation mark ! can do the same as 
run. 
 

cd path  This command changes directory. If we are now in d:\fox\practice, 
to change to d:\fox\texts, type: 

 
cd d:\fox\texts ↵ 
 

curdir()  This function returns the current directory. Now type: 
 

?curdir() ↵ 
 

quit  This command shuts down Foxpro. 

5.6 Application 

In this section we’ll write three programs for application in language processing 
using arrays, procedures, functions and the functions and commands we learned 
in 5.4. 

5.6.1 Simulation of LNRE 

LNRE (Large Number of Rare Events) refers to the phenomenon that, contrary to 
our intuition, in samples of natural language, whatever their sizes, a large 
percentage of words are hapax legomena; the number of words in the vocabulary 
of a language seems inexhaustible. In a mega-corpus like the BNC, its word 
frequency distribution is still in the LNRE zone. We have computed the 
vocabulary growth of the 100-million-word BNC at a 100000-word interval, but 



Arrays, Procedures and User-defined Functions 166 

at the right end of the vocabulary growth curve it’s still on the rise, as shown in 
Figure 5.1. 
 

 
Figure 5.1 Vocabulary growth of the BNC at a 100000-word interval 

 
According to Kornai, this lexical inexhaustiveness of a language is contributed 
by the infinite number of proper names, foreign words, typos, numeral-noun 
combinations and those generated by productive morphological processes. In 
theory, at a given point in time, the vocabulary of a language must be finite; only 
it’s impossible for us to collect all the instances of the language use, written or 
spoken, at that particular time. However, we can simulate this theoretical 
linguistic situation in which we can collect all the instances of language use at a 
particular point of time. We now assume the 2,615 word types in alice.txt are the 
entire set of vocabulary of a language at a given point in time, and their 
frequencies as their actual occurrences in the language at that given point of time. 
We’ll write a program to continuously draw replaceable samples of 50 words 
randomly from the 26,636 word tokens of alice.txt, assuming these small samples 
are the instances of language use of the language. We’ll compute the vocabulary 
growth as the number of the random samples increases, and see how many 
samples have to be drawn before the vocabulary growth goes beyond the LNRE 
zone, and the vocabulary growth becomes zero, suggesting that all the 2,615 
word types have been sampled. The program is as follows: 
 

lnre.prg 
1. set defa to d:\fox\practice 
2. set talk off 
3. clos data 



Arrays, Procedures and User-defined Functions 167

4. set deci to 18 
5. set safe off 
6. creat cursor alicetokens(word c(25),freq n(4)) 
7. creat cursor wordtable(word c(25)) 
8. creat table simulatelnre(tokennum n(10), vocgrowth n(6)) 
9. tokenincrease=0 
10. nothing='' 
11. carriage=chr(13) 
12. spaces=chr(32) 
13. textinput=filetostr('d:\fox\texts\alice.txt') 
14. textinput=strtran(textinput,'-',spaces) 
15. textinput=chrtran(textinput,',.`[?]_”!:;()*',nothing) 
16. textinput=strtran(textinput,”'”,nothing) 
17. textinput=strtran(textinput,spaces,carriage) 
18. textinput=proper(textinput) 
19. strtofile(textinput,'temp.txt') 
20. select 1 
21. append from temp.txt sdf for word<>spaces 
22. tokennumber=reccou() 
23. copy to array randarray 
24. rand(-34) 
25. select 2 
26. do while recc()<2615 
27. vocsize1=reccou() 
28. for i=1 to tokennumber 
29. randarray(i,2)=rand() 
30. endfor 
31. asort(randarray,2) 
32. appe from array randarray for recn()<vocsize1+51 
33. inde on word tag word 
34. total to temp on word 
35. zap 
36. appe from temp 
37. vocsize2=reccou() 
38. tokenincrease=tokenincrease+50 
39. sele 3 
40. appe blan 
41. repl tokennum with tokenincrease 
42. repla vocgrowth with vocsize2 
43. @10,50 say 'the vocabulary size now is: ' get vocsize2 
44. sele 2 
45. enddo 

 



Arrays, Procedures and User-defined Functions 168 

In this program, statement 4 sets the decimal place to 18 for the purpose of 
generating multi-digit random numbers to reduce the possibility of generating 
identical random numbers. Statement 9 initializes the variable tokenincrease, 
which holds the simulated cumulative number of tokens repeatedly drawn from 
alice.txt. Statement 21 appends all the word tokens of alice.txt to a temporary 
table alicetokens, which is open in work area 1. Statement 22 measures the total 
number of word tokens in alicetokens. Statement 23 copies the contents of 
alicetokens to a two-column array randarray. Statement 24 maximizes 
randomness by putting a negative number in the rand() function. The LNRE 
simulation is between statement 25 and the end of the program. Statement 25 
accesses wordtable, which continuously appends random samples, each 50 words 
in size, drawn from randarray and computes the vocabulary growth. Statement 
26 checks whether the entire set of vocabulary of alice.txt has been exhausted. 
Statement 27 measures the vocabulary size before a new sample is appended. 
Statements 28—32 put random numbers to the second column of randarray, sort 
it to randomize the sequence of the words in the first column of randarray. The 
logic behind it is as follows. If we want to randomize the word sequence of the 
first 25 words of alice.txt, We first put the 25 words in a two-column array with 
multi-digit random numbers in the second column as follows: 

Alices 0.6758961889427160
Adventures 0.7731172381900250
In 0.2714417849201710
Wonderland 0.0945006739348170
Chapter 0.0143621934112160
I 0.4986768574453890
Down 0.2750961391720920
The 0.0994334695860740
Rabbit 0.1057327471207830
Hole 0.9042704734019940
Alice 0.9436191015411170
Was 0.9195503368973730
Beginning 0.8418385328259320
To 0.6537958388216790
Get 0.2603731083218010
Very 0.1618356527760620
Tired 0.4136778663378210
Of 0.4023807174526160
Sitting 0.9838708948809650
By 0.3818097133189440
Her 0.7362824191804980
Sister 0.1399497785605490
On 0.7782076245639470
The 0.4119589095935230



Arrays, Procedures and User-defined Functions 169

Bank 0.9448720037471500
By sorting the random number column, the sequence of the words in the first 

column is randomized: 
Chapter 0.0143621934112160
Wonderland 0.0945006739348170
The 0.0994334695860740
Rabbit 0.1057327471207830
Sister 0.1399497785605490
Very 0.1618356527760620
Get 0.2603731083218010
In 0.2714417849201710
Down 0.2750961391720920
By 0.3818097133189440
Of 0.4023807174526160
The 0.4119589095935230
Tired 0.4136778663378210
I 0.4986768574453890
To 0.6537958388216790
Alices 0.6758961889427160
Her 0.7362824191804980
Adventures 0.7731172381900250
On 0.7782076245639470
Beginning 0.8418385328259320
Hole 0.9042704734019940
Was 0.9195503368973730
Alice 0.9436191015411170
Bank 0.9448720037471500
Sitting 0.9838708948809650

Statement 32 appends 50 randomized words from randarray, and statements 
33—37 measure the vocabulary growth after new random samples are added and 
identical words combined. Statement 38 increases the number of word tokens by 
50. The vocabulary growth and the cumulative number of tokens are then 
appended to simulatelnre in statements 39—42. 

The result of the LNRE simulation is displayed in Figure 5.2, which shows 
the entire LNRE zone of the vocabulary growth curve. The asymptotic property 
of the growth curve doesn’t appear until around 100,000 tokens, nearly half of 
the entire language use, after which the curve still creeps upwards, though very, 
very slowly, until the cumulative number of tokens reaches 224,150, the total 
number of tokens of the entire language use of the hypothetical language at a 
given point of time.  



Arrays, Procedures and User-defined Functions 170 

5.6.2 Lemmatization 

Lemmatization, according to Sinclair, is the process of gathering word-forms and 
turning them into lemmas. A lemma in turn is a set of lexical forms having the 
same stem, the same major part-of-speech, and the same word-sense. For 
example, words such as go, goes, going, went, gone and conference, conferences 
and so on are different word forms of the lemma go and conference. Automatic 
lemmatisation with high accuracy is difficult to achieve. For example, a 
computer lemmatisation program used in Chujo’s study on vocabulary levels of 
English textbooks and tests had only a 45% accuracy). 
 

 
Figure 5.2 Simulation of LNRE 

  
 One way of lemmatization is by the use of a list of word forms with their 
corresponding lemmas. In d:\fox\table3 there is such a wordlist table lemma 
containing 47,529 word forms and their corresponding lemmas. Figure 5.3 is part 
of the table. If we append an unlemmatized frequencied wordlist containing 
words such as Abased, Abashing etc, to the word field of the table, after totaling, 
identical word forms in the word field will be combined together, and their 
frequency will be greater than 10,000,000. For example, if the frequency of 
Abased and Abashing in the unlemmatized wordlist is respectively 3 and 7, now 
they’ll become 10,000,003 and 10,000,007. Lemmatization is done by replacing 
the words in the word field whose frequency is greater than 10,000,000 with the 
lemmas in the lemma field. The words from the unlemmatized wordlist are very 
easy to pick out because their frequency is not 10,000,000. 



Arrays, Procedures and User-defined Functions 171

 The following short program uses lemma to lemmatize awordlist in 
d:\fox\practice created in 2.5.1. 
 

 
 
 Figure 5.3 Part of the table lemma 
 

alicelemma.prg 
1. set default to d:\fox\practice 
2. close data 
3. set safety off 
4. create cursor lemmatization(lemma c(50),word c(50),freq n(10)) 
5. append from d:\fox\table3\lemma 
6. append from awordlist 
7. index on word tag word 
8. total to temp on word 
9. zap 
10. append from temp 
11. replace all word with lemma for freq>10000000 && lemmatize words 

of awordlist 



Arrays, Procedures and User-defined Functions 172 

12. replace all freq with mod(freq,10000000) for freq>10000000 &&Return 
the lemmatized words to their real frequency 

13. copy to alicelemma fields word,freq for freq<10000000 &&pick out the 
words from alwordlist 

14. use alicelemma 
15. index on word tag word 
16. total to temp on word &&combine lemmatized words 
17. zap 
18. append from temp 
19. brow 

 
The lemmatization rate of this program is not very high for large unlemmatized 
wordlists since it can’t lemmatize word forms that lemma doesn’t have. For 
example, the word wag and wags in awordlist are not combined because there 
aren't such words in lemma.  

Here we’ll use the comparison algorithm in a lemmatization program. The 
algorithm is similar to the Porter Stemmer algorithm, except that it uses a list of 
33,818 common lemmas and a list of inflexional word endings. Lemmatisation is 
done in an alphabetically sorted wordlist by comparing a word with its following 
word. If the word compared is identical with the comparing word except for the 
ending, the ending is checked against a list of inflexional word endings stored in 
wordending.txt. If a match is found in the list of endings, the comparison 
succeeds and the word compared is replaced by the comparing word. If the 
comparing word has an inflectional ending, such as ed, ing, etc, the ending is 
removed before comparison, and if the comparison is successful, the word 
compared is replaced by the comparing word. For example, if the comparing 
word is debated, and the compared words are debating and debates, ed of 
debated, ing of debating and es of debates are removed and then compared; the 
comparison would be successful because the words are identical after the 
removal of the endings and these endings can find matches in wordending.txt. 
After the comparison, debating and debates are replaced by debated, instead of 
debat because debat is not a word. This means some of the words with 
inflexional endings can not be returned to their normalized form, but are replaced 
by the preceding word with an inflectional ending. However, if there are 
normalized forms for such words in the lemma list, they will be returned to their 
normalized forms. Words such as replated, replating, replates whose normalized 
form is not included in the lemma list are all lemmatised into replated. As for 
irregular verbs, nouns with irregular plural endings and some adjectives that have 
irregular comparative degree and superlative degree forms, the program uses a 
list of such verbs, nouns and adjectives and their normalized forms for their 
lemmatization. These words are stored in irr_stopword.txt, which also contains 
words or non-words that can cause problems during lemmatization. For example, 
if there is a typo such as achiev in a wordlist, and its following word is achieved, 



Arrays, Procedures and User-defined Functions 173

then the following word would be lemmatized into achiev. Words that can cause 
problems of this kind are put in irr_stopword.txt to prevent such errors in the 
lemmatization process. The user can add more words that can cause problems in 
irr_stopword.txt. The following is the program. Since it has more than 200 
statements, explanatory notes are used between or after some statements for easy 
reading. The main program is from statement 1 to statement 13. There are five 
procedures and a user-defined function. 

 
getlemma.prg 
*This program can be used within a program or as a stand alone program  
*for lemmatization. The first and second fields of the table to be 
*lemmatized must be fields holding words and frequency respectively. 
*The frequency field MUST not be empty. Data in other fields will be *lost. 
This program uses three text files: irr_stopword.txt, wordending.txt 
*and lemma.txt. They should be put in the same folder with the program. 
1. set safe off 
2. set talk off 
3. set exact off 
4. clear 
*The following detects the work area of the table to be lemmatized and 
*assigns it to workarea_1. 
5. workarea_1=alltr(str(sele())) 
*The following three statements respectively detect and assign the name *of 
the table to be lemmatized, the first two field names to tablename,  
*wordfield and freqfield. 
6. tablename=dbf() 
7. wordfield=field(1) 
8. freqfield=field(2) 
9. @10,30 say 'lemmatizing &tablename now. please wait...' 
10. totalize(wordfield) &&this function indexes and totals wordfield of 

tablename 
11. do irregular &&this procedure gets the stop words and lemmatizes 

irregular words 
12. do regular &&this procedure lemmatizes words with normal endings 
13. @10,30 say 'lemmatization of &tablename is completed. All the 

lemmatized words are stored in lemma_log.dbf.' 
*The following procedure lemmatizes words with irregular endings and  
*stops certain words that might cause lemmatization errors. 
14. procedure irregular 
15. public workarea_2,workarea_3,workarea_4 
*lem_temp is a temporary table for lemmatization. 
16. creat table lem_temp(lemma c(60),&wordfield c(60), &freqfield 

n(20),freq_1 n(4),freq_2 n(4)) 



Arrays, Procedures and User-defined Functions 174 

*Get the work area of lem_temp. 
17. workarea_2=alltr(str(sele())) 
*lemma_log keeps the lemmatized words and their corresponding  
*unlemmatized forms for checking after the program completes  
*lemmatization. 
18. creat tabl lemma_log (lemma c(60),&wordfield c(60),&freqfield 

n(20),freq_1 n(4),freq_2 n(4)) 
*Get the work area of lemma_log. 
19. workarea_3=alltr(str(sele())) 
*The table word_ending holds word endings such as s, es, ed, ing, ies ,ect. 
20. creat table word_ending(wordend1 c(14),wordend2 c(14),note c(40)) 
*Get the work area of the table word_ending. 
21. workarea_4=alltr(str(sele())) 
*wordending.txt is a text file containing different types of inflectional  
*endings. 
22. appe from wordending.txt deli with ',' 
23. sele &workarea_2&& access table lem_temp 
*irr_stopword.txt contains irregular words and those words that may result  
*in errors. It has two columns separated by a comma. The first column  
*contains lemmas, which will be appended to the lemma field of 
*lem_temp; the second their corresponding word forms, which will be 
*appended to the word field. For stop words, both the first and the second 
*column contain the same form. 
24. appe from irr_stopword.txt deli with ',' 
25. repl all freq_1 with 1 
*Append words from the table to be lemmatized to the field wordfield. 
26. appe from &tablename 
*The following mark the newly appended words in wordfield from  
*tablename with 1 in freq_2. 
27. repl all freq_2 with 1 for freq_1=0 
28. totalize(wordfield) 
*After totalling, those words in wordfield identical with those in lemma  
*have freq_1=1 and freq_2=1. These words are to be lemmatized and  
*stopped. 
29. sele &workarea_3&& access lemma_log, which is currently empty 
*Append words from lem_temp whose freq_1 and freq_2 are both 1 but  
*lemma<>&wordfield to keep record of those words lemmatized. Words 
*with freq_1=1 and freq_2=1 and lemma=wordfield are stop words and  
*should not be included in lemma_log.   
30. appe from lem_temp fiel lemma,&wordfield,&freqfield,freq_1,freq_2 

for freq_1>0 and freq_2>0 and lemma<>&wordfield &&prevent stop 
words such as achiev, we, she from being appended as lemmatized 
words. 



Arrays, Procedures and User-defined Functions 175

31. sele &workarea_2&&lem_temp. 
*The following lemmatize the irregular words. 
32. repl all &wordfield with lemma for freq_1>0 and freq_2>0 
33. totalize(wordfield) 
*The following mark all the lemmatized words and stop words from  
*&tablename with four *'s to exclude them from the following  
*lemmatization process for regular words. 
34. repl all &wordfield with alltr(&wordfield)+'****' for freq_1>0 and 

freq_2>0 
35. sele &workarea_1&&the main table to be lemmatized, tablename. 
36. zap&&remove the old contents 
*Get its words back from lem_temp minus the lemmatized irregular words  
*and stop words. 
37. appe from lem_temp for '*'$&wordfield=.f. and &freqfield>0 
*Append from lemma.txt. 
38. appe from lemma.txt sdf 
*The following is for putting words like accompany before accompanied  
*in sorting so as to lemmatize the latter with the former since 2# is smaller 
*than any letter. We can use any characters smaller than any letters, such  
*as 0*, 1^.  
39. repl all &wordfield with strtr(&wordfield,'y','2#') 
40. totalize(wordfield) 
41. dele tag all 
*Change 2# back to y. 
42. repl all &wordfield with strtr(&wordfield,'2#','y') 
43. return 
*The following procedure lemmatizes words with regular endings. 
44. procedure regular 
45. go top 
46. do while .not. eof() 
47. recordpointer=recno()&&get position of record pointer. 
48. worda=alltrim(&wordfield) 
49. do getwordendinga&&get the ending of first word 
50. skip 
51. wordb=alltrim(&wordfield) 
52. do getwordendingb &&get the ending of the following word 
*The following cases are for lemmatizing words with different types of  
*endings. 
53. do case 
54. case wordb=worda and wordawordend1<>'e' and wordawordend2<>'ed' 

and wordawordend1<>'y' and wordalen>2 or wordaend3='eed' 
55. do while wordb=worda 
56. if wordawordend1=='s' 



Arrays, Procedures and User-defined Functions 176 

57. endtype='x'&&the x types of ending include words ending in ch, x, s, z 
sh and so on 

58. wordslen=len(worda) 
59. frequency=&freqfield 
60. do lemmatize 
61. else 
62. if wordawordend1=='x' 
63. endtype='x' 
64. wordslen=len(worda) 
65. frequency=&freqfield 
66. do lemmatize 
67. else 
68. if wordawordend1=='z' 
69. endtype='x' 
70. wordslen=len(worda) 
71. frequency=&freqfield 
72. do lemmatize 
73. else 
74. if wordawordend2=='ch' 
75. endtype='x' 
76. wordslen=len(worda) 
77. frequency=&freqfield 
78. do lemmatize 
79. else 
80. if wordawordend2=='sh' 
81. endtype='x' 
82. wordslen=len(worda) 
83. frequency=&freqfield 
84. do lemmatize 
85. else 
86. if wordawordend1==left(wordbends,1)&&words such as   

acquit,acquitted 
87. endtype='0' && endtype='0' means words not ending in e, y, ing, ed, es, 

f, fe, ying, ied or the x type of ending such as x, s, ch, sh, etc 
88. wordslen=len(worda)+1  
89. frequency=&freqfield 
90. do lemmatize 
91. else 
92. if wordawordend1=='o' and wordbwordend2<>'os'&&for potatoes, but 

not photos. 
93. endtype='e' 
94. wordslen=len(worda) 
95. frequency=&freqfield 



Arrays, Procedures and User-defined Functions 177

96. do lemmatize 
97. else&&words such as work,works, photo, photos. 
98. endtype='0' 
99. wordslen=len(worda) 
100. frequency=&freqfield 
101. do lemmatize 
102. endif 
103. endif 
104. endif 
105. endif 
106. endif 
107. endif 
108. endif 
109. enddo 
110. case wordb=worda1 and (wordawordend1=='e' or  

wordawordend1=='y' or wordawordend1=='f')and worda1len>2  
111. do while wordb=worda1 
112. if wordawordend1=='e' 
113. endtype='e' 
114. wordslen=len(worda1) 
115. frequency=&freqfield 
116. do lemmatize 
117. else 
118. if wordawordend1=='y' 
119. endtype='y' 
120. wordslen=len(worda1) 
121. frequency=&freqfield 
122. do lemmatize 
123. else 
124. if wordawordend1=='f' 
125. endtype='f' 
126. wordslen=len(worda1) 
127. frequency=&freqfield 
128. do lemmatize 
129. endif 
130. endif 
131. endif 
132. enddo 
133. case wordb=worda2 and (wordawordend2=='ed' or 

wordawordend2=='fe' or wordawordend2=='es') and 
wordaend3<>'ied' and worda2len>2 

134. do while wordb=worda2 
135. if wordawordend2=='ed' 



Arrays, Procedures and User-defined Functions 178 

136. endtype='ed' 
137. wordslen=len(worda2) 
138. frequency=&freqfield 
139. do lemmatize 
140. else 
141. if wordawordend2=='fe' 
142. endtype='fe' 
143. wordslen=len(worda2) 
144. frequency=&freqfield 
145. do lemmatize 
146. else 
147. if wordawordend2=='es' 
148. endtype='es' 
149. wordslen=len(worda2) 
150. frequency=&freqfield 
151. do lemmatize 
152. endif 
153. endif 
154. endif 
155. enddo 
156. case wordb=worda3 and (wordaend3=='ied' or wordaend3=='ing') 

and worda3len>2 
157. do while wordb=worda3 
158. if wordaend3=='ied' 
159. endtype='ied' 
160. wordslen=len(worda3) 
161. frequency=&freqfield 
162. do lemmatize 
163. else 
164. if wordaend3=='ing' 
165. endtype='ing' 
166. wordslen=len(worda3) 
167. frequency=&freqfield 
168. do lemmatize 
169. endif 
170. endif 
171. enddo 
172. case wordb=worda4 and wordaend4=='ying' and worda4len>2 
173. do while wordb=worda4 
174. endtype='ying' 
175. wordslen=len(worda4) 
176. frequency=&freqfield 
177. do lemmatize 



Arrays, Procedures and User-defined Functions 179

178. enddo 
179. endcase 
180. if recordpointer<reccount() 
181. go recordpointer+1 
182. endif 
183. enddo 
184. sele &workarea_1&&tablename 
185. dele all for &freqfield=0&&remove those words from lemma.txt 
186. pack 
*Get back those lemmatized irregular words and stop words. 
187. appe from lem_temp for '*'$&wordfield and &freqfield>0 
188. repl all &wordfield with strtr(&wordfield,'*','')&&remove *. 
189. totalize(wordfield) 
190. sele &workarea_3&&lemma_log 
191. dele all for &freqfield=0 
192. pack 
193. sort to temporary_table on lemma 
194. zap 
195. appe from temporary_table 
196. selec &workarea_1&&tablename 
197. return 
198. procedure lemmatize 
199. sele &workarea_4 
*Searching for corresponding ending. 
200. loca for right(wordb,wordblen-wordslen)==alltr(wordend2) and 

alltr(wordend1)==endtype 
*In the following statements, if a match is hit, the lemmatized word is put  
*in lemma_log in workarea_3. 
201. if found() and right(wordb,wordblen-wordslen)==alltr(wordend2) 
202. sele &workarea_3&&lemma_log. 
203. appe blan 
204. repl lemma with worda 
205. repl  &wordfield with wordb&&the word form before 

lemmatization. 
206. repl &freqfield with frequency 
207. sele &workarea_1&&tablename 
*The following is the most important statement, which does the  
*lemmatization. 
208. repl &wordfield with worda 
209. endif 
210. sele &workarea_1 
211. if not eof() 
212. skip 



Arrays, Procedures and User-defined Functions 180 

213. wordb=alltrim(&wordfield) 
214. do getwordendingb 
215. endif 
216. return 
217. procedure getwordendinga 
*Declaring public variables whose values are recognized both in the main 
*program and sub-programs. 
218. public wordalen,worda1len,worda2len,worda3len,worda4len,worda1, 

worda2,worda3,worda4, wordaend,wordawordend1, wordawordend2, 
wordaend3,wordaend4 

219. wordalen=len(worda) 
220. wordawordend1=right(worda,1) 
221. wordawordend2=right(worda,2) 
222. wordaend3=right(worda,3) 
223. wordaend4=right(worda,4) 
224. worda1=left(worda,wordalen-1) 
225. worda1len=len(worda1) 
226. worda2=left(worda,wordalen-2) 
227. worda2len=len(worda2) 
228. worda3=left(worda,wordalen-3) 
229. worda3len=len(worda3) 
230. worda4=left(worda,wordalen-4) 
231. worda4len=len(worda4) 
232. return 
233. procedure getwordendingb 
234. public wordbends, wordblen, wordb1len, wordb2len, wordb3len, 

wordb4len, wordb1, wordb2, wordb3, wordb4, wordbwordend1, 
wordbwordend2, wordbend3,wordbend4 

235. wordblen=len(wordb) 
236. wordbends=right(wordb,wordblen-wordalen) 
237. wordbwordend1=right(wordb,1) 
238. wordbwordend2=right(wordb,2) 
239. wordbend3=right(wordb,3) 
240. wordbend4=right(wordb,4) 
241. wordb1=left(wordb,wordblen-1) 
242. wordb1len=len(wordb1) 
243. wordb2=left(wordb,wordblen-2) 
244. wordb2len=len(wordb2) 
245. wordb3=left(wordb,wordblen-3)   
246. wordb3len=len(wordb3) 
247. wordb4=left(wordb,wordblen-4) 
248. wordb4len=len(wordb4) 
249. return 



Arrays, Procedures and User-defined Functions 181

250. function totalize 
251. parameters fieldx 
252. repl all &fieldx with prop(&fieldx) 
253. index on &fieldx tag &fieldx 
254. total to temporary_table on &fieldx 
255. zap 
256. append from temporary_table 
257. return 

 
Now save the program in d:\fox\practice and copy irr_stopword.txt, 
wordending.txt and lemma.txt to this folder from d:\fox\texts. Use bnc3 in 
d:\fox\table2, copy it to d:\fox\practice\test and type the following: 
 

set defa to d:\fox\practice ↵ 
use test ↵ 
do getlemma ↵ 
 

The program will start running. To check the lemmatization result, type: 
 

close data ↵ 
use lemma_log ↵ 
brow ↵ 

 
The words in the word field are those before lemmatization, and those in the 
lemma field are their lemmatized forms. To view the lemmatized table, type: 
 

use test ↵ 
brow ↵ 

 
Attention should be paid to the following when using this program: 

1. Some lemmatization schemes make distinction in parts of speech of the 
words to be lemmatized. The verb man and the noun man are regarded as two 
different words. This program doesn’t make such distinctions. 
2. In this program, words like saw, a tool with toothed edge, is regarded as the 
past tense of see, and is lemmatized into see. To prevent cases like this, such 
words should be marked before lemmatization. 
3. If a text has words like brownbagged, brownbagging and brownbags but not 
brownbag, they will be lemmatized into brownbagged since lemma.txt doesn’t 
have the normalized form brownbag. This is not a problem for just one text. But 
if we lemmatize more than one text for, say, lexical comparison, this can result in 
inaccuracy, especially for small texts. For example, if texta has brownbag and 
brownbagging, and textb has brownbagged and brownbags, brownbagging in 



Arrays, Procedures and User-defined Functions 182 

texta will be lemmatized into brownbag, while brownbags in textb will be 
lemmatized into brownbagged. To prevent this from happening, in lemmatizing 
more than one text or table, first put all the texts or tables together and lemmatize 
them. Then lemmatize them again one by one using lemma_log the way 
alicelemma.prg does. This way words of the same stem in these texts or tables 
will have the same lemmatized form.  

5.6.3 Extracting lexical information from multiple texts or tables 

In this section, we’ll look at a program that can extract lexical information from 
multiple texts or tables, such as vocabulary growth, the growth of words with 
frequency between 1—15, and the vocabulary size and number of words with 
frequency between 1—15 in each of the texts or tables, etc. The program uses the 
50 tables bncst1, bncst2…bncst50 in d:\fox\table2. Each of the tables contains 
word types with POS tags from a text chunk about 2,000 words in length 
randomly sampled from the BNC spoken text section. The program is as follows: 
 

lexinfo.prg 
*This program extracts lexical information from multiple tables as these  
*tables are sampled and put together one by one, such as vocabulary  
*growth, the growth of words with frequency 1 to 15, vocabulary size of  
*individual tables and their respective number of words with frequency 1  
*to 15.  
1. set defau to d:\fox\practice 
2. set safety off  
3. set talk off 
4. clos data 
5. clear 
6. set deci to 16&&generating random numbers for randomizing the 

sequence of tables 
7. starttime=time()&&get the starting time 
*The following creates lexinfo1 for holding table names, number of word 
*tokens, table vocabulary size and the number of words with frequency  
*1—15 in each table 
8. create table lexinfo1(tablename c(30),tabletoken n(6),tablevoc n(4),; 

f1 n(5),f2 n(5),f3 n(5),f4 n(5),f5 n(5),f6 n(5),f7 n(5),f8 n(5),f9 n(5),; 
f10 n(5),f11 n(5),f12 n(5),f13 n(5),f14 n(5),f15 n(5)) 

*The following creates lexinfo2 for holding the same set of table names as  
*in lexinfo1, cumulative number of tokens as these tables are sampled and  
*put together one by one, vocabulary growth, and the growth of words 
*from frequency 1—15. 
9. creat table lexinfo2(tablename c(30), cumutoken n(8),vocgrowth; 



Arrays, Procedures and User-defined Functions 183

n(6), fgrowth1 n(5),fgrowth2 n(5),fgrowth3 n(5), fgrowth4 n(5),; 
fgrowth5 n(5), fgrowth6 n(5), fgrowth7 n(5),fgrowth8 n(5),fgrowth9; 
n(5), fgrowth10 n(5),fgrowth11 n(5), fgrowth12 n(5), fgrowth13 n(5),; 
fgrowth14 n(5),fgrowth15 n(5)) 

*temp1 is for removing the POS tags and calculating number of tokens  
*and vocabulary size of individual tables. 
10. creat table temp1(word c(25),freq n(8))  
*temp2 is for calculating cumulative number of tokens, vocabulary growth 
*and the growth of words from frequency 1—15.  
11. creat table temp2 (word c(25),freq n(8)) 
12. close databases 
13. nothing='' 
14. spaces=chr(32) 
*Put the 50 bnc tables bncst1—bncst50 in array bnctable. 
15. adir(bnctable,'d:\fox\table1\bncst*.dbf') 
16. rand(-45) &&maximize randomness. 
17. for i=1 to 50 
18. bnctable(i,2)=rand() &&replace the second column with random 

numbers 
19. endfor 
*Sort the second column of array bnctable to randomize the order of the  
*50 tables. 
20. asort(bnctable,2) 
21. sele 1 
22. use temp1 
23. for i=1 to 50 
24. if mod(i,10)=0 &&send message to screen at an interval of 10 
25. @10,70 say 'number of tables processed. ' get i 
26. endif 
*Assign table names held in the first column of the array bnctable to  
*tabletoappend. 
27. tabletoappend='d:\fox\table1\'+bnctable(i,1) 
28. appe from &tabletoappend 
29. repl all word with subs(word,1,at(spaces,word)) &&remove POS tags 
30. totalize('word','freq') &&the function totalize() totals words in temp1 
31. sum freq to tokennumber &&get number of tokens of individual table 
*Measure vocabulary size of individual tables. 
32. vocsize=recc() 
33. sele 2 
34. use lexinfo1 
*The following statement mainly gets words of frequency 1--15 of  
*individual tables and appends it to lexinfo1 using the function getfreq(). 
35. getfreq('freq','f','tabletoken','tablevoc')  



Arrays, Procedures and User-defined Functions 184 

36. sele 1 
37. use temp2 
38. append from temp1 
*The following computes vocabulary growth and the growth of words  
*with frequency 1—15. 
39. totalize('word','freq') 
40. sum freq to tokennumber &&cumulative number of tokens 
41. vocsize=reccount() &&vocabulary growth 
42. select 2 
43. use lexinfo2 
*The following function mainly computes growth of words with  
*frequency 1—15.  
44. getfreq('freq','fgrowth','cumutoken','vocgrowth') 
45. select 1 
46. use temp1 
47. zap 
48. endfor 
49. ?starttime&&output starting time to screen 
50. ?time()&&output ending time to screen 
51. function totalize 
52. parameters wordfield,freqfield 
53. inde on &wordfield tag &wordfield 
54. total to temp on &wordfield 
55. zap 
56. appe from temp 
57. return 
58. function getfreq 
59. parameters freqfield,freqfieldx,tokens,vocabulary 
60. select 2 
61. append blan 
62. select 1 
63. for ii=1 to 15 
64. count to freqnumber for &freqfield=ii 
65. sele 2 
66. fld=freqfieldx+alltr(str(ii)) 
67. repl &fld with freqnumber 
68. repl tablename with tabletoappend 
69. repl &tokens with tokennumber&&individual token 
70. repl &vocabulary with vocsize 
71. sele 1 
72. endfor 
73. return 

 



Arrays, Procedures and User-defined Functions 185

Information obtained with this program is very useful in quantitative linguistic 
research. Figure 5.4 displays the vocabulary growth and the growth of words 
with frequency between 1 to 15 of the 50 tables. Figure 5.5 displays the 
relationship between vocabulary size and the number of words occurring 1—4 
times in the 50 tables.  

 

 
Figure 5.4 Vocabulary growth and the growth of words with frequency 
between 1 to 15 of the 50 tables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.5 The relationship between vocabulary size and the number of 
words occurring 1—4 times in the 50 tables. The small circles are vocabulary 
sizes of the individual tables. 



Arrays, Procedures and User-defined Functions 186 

5.6.4 Extracting information on word class distribution 

Quirk et al classifies English words into the following word classes: noun, 
adjective, full verb, adverb, preposition, pronoun, determiner, conjunction, modal 
verb, primary verb, numeral and interjection. The distributions of word classes 
tend to be different in different registers, for example, in spoken English and 
written English. In d:\fox\table2 there are 50 wordlist tables with POS tags, 
named from bncwt1 to bncwt50. These wordlists were made from 50 2000-word 
samples randomly drawn from the written text section of the BNC. We’ll write a 
program to calculate the number of words belonging to the different word classes 
in each of the tables, as well as the cumulative number of words belonging to 
different word classes as the tables are put together one by one. The BNC uses a 
set of 57 POS tags because it subcategorizes words of the same class. We’ll 
ignore these fine distinctions and reduce these POS tags to NN, noun; VV, verb; 
AJ, adjective; AV, adverb; DT, determiner; PN, pronoun; PRP, preposition; CJ, 
conjunction; VM0, modal auxiliary; CRD, numeral; NP0, proper noun; TO0, the 
infinitive marker to; ITJ, interjection; UNC, unknown category. We’ll combine 
AT, article, DPS, possession pronoun, into DT; ORD, ordinal number, into CRD; 
PRF, of, into PRP; XX0, not, into AV; and EX0, existential there, into PN. The 
program is as follows. 
 

wordclass.prg 
*This program calculates vocabulary growth, cumulative number of  
*nouns, verbs and so on of 50 BNC tables, and those of individual tables. 
1. set defa to d:\fox\practice 
2. clos data 
3. set safe off 
4. set talk off 
5. clear 
*In wordclass, tablename, cumutokens, vocgrowth, tabletoken, tablevoc 
*are respectively for table names, cumulative number of tokens,  
*vocabulary growth, number of tokens in each table, vocabulary size of  
*each table. The rest of the fields are for number of words belonging to a  
*particular word class. Those with c at beginning are for cumulative  
*number of words belonging to a class. For example, cnn means  
*cumulative number of nouns, while nn refers to number of nouns in each  
*of the 50 tables. 
6. creat table wordclass(tablename c(30),cumutokens n(8),vocgrowth;  

n(6),tabletoken n(4),tablevoc n(4),cnn n(8),cvv n(8),cadj n(8),cadv;  
n(8),cdet n(8),cpron n(8),cprep n(8),ccj n(8),cmodl n(8),ccrd n(8), ; 
cnp0 n(8),ct00 n(6),cintj n(6),cunc n(6),nn n(4),vv n(3),adj n(3),adv; 
n(3),det n(3),pron n(3),prep n(3),cj n(3),modl n(3),crd n(3), np0 n(3),; 
t00 n(3),intj n(3),unc n(3)) 



Arrays, Procedures and User-defined Functions 187

*Create a 33-element array holding the above fields that are now empty. 
7. scatter to wordclassarray 
8. creat table temp1(word c(40), freq n(8),marker n(2))&&for loading the 

50 tables one at a time. 
9. creat table temp2(word c(40),freq n(8),marker n(2))&&for calculating 

vocabulary growth. 
10. creat table temp3(word c(40),freq n(8),marker n(2))&&for cumulative 

number of words belonging to different classes 
*Assign word class tags to postag1. 
11. postags1='NN,V,AJ,AV,DT,PN,PRP,CJ,VM0,CRD,NP0,TO0,ITJ,UNC

,' 
*Assign pairs of POS tags to be combined to postag2. The first tag of a  
*pair is to be replaced with the second tag of the pair. 
12. postags2='XX0 AV,AT DT,DPS DT,ORD CRD,PRF PRP,XX0 

AV,EX0 PN,' 
*Create an array to hold the 14 word classes NN, V, AJ etc. 
13. dimen posarray1(14) 
14. for i=1 to 14 
*Cut the POS tags one at a time from postag1 and put it to the array  
*posarray1. 
15. posarray1(i)=subs(postags1,1,at(',',postags1)-1) 
16. postags1=stuff(postags1,1,at(',',postags1),'') 
17. endfor 
*Create an array for storing the POS tags to be combined. 
18. dimen posarray2(7) 
19. for i=1 to 7 
*Cut each POS tag pairs from postag2 and put it to the array posarray2. 
20. posarray2(i)=subs(postags2,1,at(',',postags2)-1) 
21. postags2=stuff(postags2,1,at(',',postags2),'') 
22. endfor 
23. cumutokennumber=0&&initialize cumutokennumber 
*Process the 50 tables one by one. 
24. for i=1 to 50 
25. tablename='d:\fox\table2\bncwt'+alltr(str(i)) 
*The following sends message to the screen at a 10-table interval. 
26. if mod(i,10)=0 
27. @10,70 say 'Number of tables processed: ' get i 
28. endif 
29. select 2&&temp1 
30. appe from &tablename 
31. sum freq to tabletoken&&tokens of each table. 
*Get cumulative number of tokens. 
32. cumutokennumber=cumutokennumber+tabletoken 



Arrays, Procedures and User-defined Functions 188 

*Put table name and cumulative number of tokens to the first element and  
*the second element of wordclassarray. 
33. wordclassarray(1)=tablename 
34. wordclassarray(2)=cumutokennumber 
*The following replace AT with DT, XX0 with AV etc. When ii=1,  
*posarray2 (1) has the POS tag pair 'XX0 AV' and subs (posarray2(ii),; 
*1,at(' ',posarray2(ii))-1) gets XX0, and stuff(posarray2(ii),1,at(' ‘ , ; 
posarray2(ii)),'') gets AV.  
*The former is replaced by the latter. 
35. for ii=1 to 7 
36. repla all word with strtr(word,subs(posarray2(ii),1,at(' 

',posarray2(ii))-1),stuff(posarray2(ii),1,at(' ',posarray2(ii)),'')) 
37. endfor 
38. selec 3&&temp2, for voc growth. 
39. appe from temp1 
40. repl all word with left(word,rat(' ',rtrim(word))) for freq>0&&remove 

POS tags 
41. totalize('word') 
*Get vocabulary growth. 
42. vocincrease=recc() 
43. count to tablevocsize for freq>0&&get individual vocabulary size 
*Store vocabulary growth, tokens, vocabulary size of each table to 

wordclassarray. 
44. wordclassarray(3)=vocincrease 
45. wordclassarray(4)=tabletoken 
46. wordclassarray(5)=tablevocsize 
47. repl all freq with 0&&for loading the next table 
48. selec 4&&temp3, for cumulative number of word classes 
49. appe from temp1 
50. totalize('word') 
*The following keeps record of how many elements in wordclassarray;  
*have been loaded. 
51. element=5 
*Function getwordnumber sums the numbers of words belonging to a ; 
*word class and stores them in wordclassarray. 
52. getwordnumber('freq','word','posarray1','wordclassarray','marker') 
*The marker field is for showing whether a table is newly loaded or old.; 
*Words whose marker field is 1 are newly loaded. 
53. repl all marker with 1 
54. selec 2&&temp1. 
*The following keeps records of how many elements in wordclassarray; 
*have been loaded. 
55. element=19 



Arrays, Procedures and User-defined Functions 189

56. getwordnumber('freq','word','posarray1','wordclassarray','marker') 
57. selec 1 
58. appe blan 
*Append the contents of the 33-element array to the 33 fields of  
*wordclass. 
59. gather from wordclassarray 
60. selec 2&&temp1 
61. zap&&empty it for the next table. 
62. endfor 
63. select 1&&access table wordclass. 
*cvv includes cmodle. So the number of cmodl must be subtracted from it. 
64. repl all cvv with cvv-cmodl 
*The same as above. 
65. repl all vv with vv-modl 
66. function totalize 
67. parameters wordfield 
68. inde on &wordfield tag &wordfield 
69. tota to temp on &wordfield 
70. zap 
71. appe from temp 
72. return 
73. function getwordnumber 
74. parameters freqfield,wordfield,posarray,classarray,markfield 
*The following removes words but keeps the POS tags. 
75. repl all &wordfield with stuff(&wordfield,1,at(' ',&wordfield),'') for 

&markfield=0 
*The following removes words like "as" in "as well as AV0" but keeps AV0 
76. repl all &wordfield with stuff(&wordfield,1,rat(' ',rtrim(&wordfield)),'') 

for &markfield=0 
77. repl all &wordfield with stuff(&wordfield,at('-',&wordfield),10,'')  for 

'-'$&wordfield and &markfield=0&&remove hyphen and the tag after it 
*The following statements get the number of words belonging to each of; 
*the 14 word classes. The variable element contains the number of; 
*elements wordclassarray stores, so new information should be stored; 
*from element+ii. 
78. for ii=1+element to 14+element 
79. sum &freqfield to wordclassnumber for &wordfield = 

&posarray(ii-element)&&posarray(ii) has elements from 1 to 14! 
80. &classarray(ii)=wordclassnumber 
81. endfor 
82. return 

 
Part of the result is shown in Figure 5.6. 



Arrays, Procedures and User-defined Functions 190 

 
 

Figure 5.6 Part of the table wordclass 

Exercises 

1. Write a short program alicearray.prg to create an array of 2,615 rows and two 
columns and put in it one at a time the 2,615 words and their frequency in 
awordlist. Sort the second column (the one holding frequency) in descending 
order. Create a table temp and append the contents of alicearray to it. 
 
2. Rewrite the program awordlist.prg in 2.5.1. Turn statements 9—16 into a 
procedure called tokenizer, and statements 17—20 into a function totalize(). Save 
it as awordlistb.prg. 
 
3. In his Word Frequency Distributions, Baayen compares word frequency 
distributions with the outcomes of casting a fair die repeatedly. The former is a 
LNRE phenomenon while the latter is not. It doesn’t take many throws before the 
six possible outcomes have all appeared. Write a program to simulate 50 throws 



Arrays, Procedures and User-defined Functions 191

of a fair die, putting the outcome in a table of each throw and the number of 
different outcomes as the number of throws increases. Use an array for the die 
throw simulation. 
 
4. In taking samples from a number of different texts, we should randomize the 
starting sampling point within a text to prevent sampling from the same position, 
say, the beginning of a text. Use the 48 text chunks in d:\fox\texts as the source 
texts and write a program to draw 48 samples with a length of about 150 words 
from each of the texts. The samples should be drawn from four different 
positions within the source text. 
 
5. In 2.5.1 there are three programs awordlist.prg, lwordlist.prg and compare.prg. 
Now write one program that can do the same things the three programs do. The 
program should have a function that turns alice.txt and lglass.txt into two 
lemmatized tables (use the program getlemma.prg), and a procedure that 
compares the two tables, picking out the shared words and unique words of the 
two tables. 
 
6. Write a program to do the following: put the names of the 50 tables in 
fox\table2 from bncwlem1 to bncwlem50 into an array, turn them into 25 pairs 
randomly and calculate the number of words each of the pairs shares; create a 
table and put the names of the tables of each pair, the vocabulary size of each of 
the tables and the number of words they share into it. Use an array where 
possible in the program. 



6 Interactive Programming, Program 
Packaging and Foxpro Graphs 

Interactive programming refers to writing programs that interact with the user. 
Such programs can ask for task-related information from, or send such 
information to the user during program execution. For a bulky program that 
needs supporting files, i.e. the lemmatization program, we can put the program 
and the supporting files together in a package to make it portable so that it can be 
easily moved around from one folder to another, or from one computer to another. 
Foxpro has a graph wizard, which can turn data contained in a table into different 
types of graph. This can be done by using Foxpro’s graph wizard following a few 
simple fool-proof directions. In this chapter we’ll learn how to do all the above. 

6.1 Writing Interactive Programs 

6.1.1 Commands for keyboard input 

accept [string] to variable  This command prints string on the screen and 
stores the input by the user through the keyboard in variable. 

 
accept 'This program tokenizes a text. Please specify the name of the file: 'to 
filename ↵ 
d:\fox\texts\alice.txt ↵ 
?filename ↵ 
d:\fox\texts\alice.txt 
 

Now type the following. After completing the first statement, move the down key 
to start a new line and type the second statement. Highlight the two statements 
and press Enter: 
 

accept 'What is your age?: ' to age 
?'Your age is: ' +age 

 
The computer pauses for input from the user after it executes the first statement. 
When a number is entered followed by Enter, the computer executes the second 
statement and the number inputted by the user is printed on the screen. 
 

input [string] to variable  This command does the same thing as the accept 
command except that the input entered through the keyboard must have quotation 
marks on either side unless it’s a number. 

 



Interactive Programming, Program Packaging and Foxpro Graphing 

 

193

input 'This program tokenizes a text. Please specify the name of the file: ' to 
filename ↵ 
d:\fox\texts\alice.txt ↵ 
variable ‘D’ is not found 
 
'd:\fox\texts\alice.txt' ↵ 
?filename ↵ 
d:\fox\texts\alice.txt 
 
input 'What is your age?: ' to age ↵ 
23 ↵ 
 
?age ↵ 
23 

6.1.2 Application 

Now we’ll write an interactive program that tokenizes a text file and makes a 
wordlist for it. In addition, it also does the following: 
1. asks the user for the name and the path of the text file to be processed; 
2. if the file doesn’t exist, the program asks the user to re-enter the source file; 
3. asks the user for the name and the path of the table for storing the wordlist; 
4. tells the user where the results are stored. 
The program is as follows: 
 

interactive.prg 
*The following statements interact with the user, asking for the path, and  
*the name of the source text, the name of output text file etc. If the source  
*text does not exist or wrongly entered, the program will ask the user to  
*re-enter until it finds the source text. 
1. @10,30 say 'This program tokenizes a text and turn it into a frequencied 

wordlist.' 
2. accept space(30)+'Please specify the path of the source text and its name 

with file extension (e.g. d:\fox\practice\text1.txt): ' to sorcetext 
3. clear 
4. @10,30 say 'The source text is: '+sorcetext 
5. clear 
6. do while file(sorcetext)=.f. 
7. @10,30 accept space(30)+sorcetext+ ' does not exist. Please reenter the 

name of the source text. Press ESCAPE to exit: ' to sorcetext 
8. clear 
9. enddo 



Interactive Programming, Program Packaging and Foxpro Graphing 

 

194 

10. @10,30 say 'The source text is '+ sorcetext 
11. accept space(30)+'Please specify the drive and folder for the result file 

(e.g., d:\fox\practice): ' to drivefolder 
12. set defa to &drivefolder 
13. accept space(30)+'Please specify the name of the table for the wordlist 

without file extension: ' to outputtable 
14. set safe off 
15. set talk off 
16. close data 
17. clear 
18. create table temp1(word c(30),freq n(4)) 
19. nothing='' 
20. spaces=chr(32) 
21. carriage=chr(13) 
22. textinput=filetostr('&sorcetext') 
23. textinput=strtran(textinput,'-',spaces) 
24. textinput=strtran(textinput,spaces,carriage) 
25. strtofile(textinput,'temp.txt') 
26. append from temp.txt sdf for word<>spaces 
27. replace all word with chrtran(word,',.`[?]_”!:;()*',nothing) 
28. replace all word with strtran(word,”'”,nothing) 
29. replace all word with prop(word) 
30. replace all freq with 1 
31. index on word tag word 
32. total to temp2 on word 
33. zap 
34. append from temp2 for word<>spaces 
35. copy to &outputtable 
36. clear 
37. @11,40 say 'The result is stored in '+drivefolder+'\'+upper(outputtable) 
 

In this program, statements 1—13 are for interaction between the user and the 
computer, while the rest are very similar to awordlist.prg. 

6.2 Program Packaging 

In 5.6.2 we wrote a program getlemma.prg. It’s very long and has three 
supporting files: irr_stopword.txt, wordending.txt and lemma.txt. It’s very 
inconvenient to move programs like getlemma.prg around from one folder to 
another or from one computer to another. To make such programs portable, we 
can put the program and the supporting files into one single package, which is 
called a project in Foxpro. The command to start packaging is as followings: 



Interactive Programming, Program Packaging and Foxpro Graphing 

 

195

modify project projectname  Suppose we want to put getlemma.prg and its 
three supporting files into a single package called lemmatizer, do the following. 
Type the following in the command window: 
 

 modify project lemmatizer ↵ 
 
The project manager window appears, as shown in Figure 6.1 
 

 
 

Figure 6.1. The Project Manager window 
 
2. Click on all the + signs on the left of Data, Documents, Class Libraries, Code 
and Other to expand these items, as shown in Figure 6.2. 
3. Click on Programs under Code, and then Add, select the program 
getlemma.prg and click on OK. 
4. Click on Text files under Other and then Add, press the Ctrl key and select 
irr_stopword.txt, wordending.txt and lemma.txt and click on OK. 
5. Click on Build and the following build options window appears, as shown in 
Figure 6.3. Select Wind32 executable/COM server (exe), Recompile All Files and 
Display Errors, then click on OK. The program getlemma.prg and its supporting 
files irr_stopword.txt, wordending.txt and lemma.txt are packaged into a single 
stand-alone project called lemmatizer with the file extension exe. It has an 
icon—a little fox head. To lemmatize a table containing a word field and field, 



Interactive Programming, Program Packaging and Foxpro Graphing 

 

196 

put lemmatizer.exe in the folder where the table is open and type  the following 
in the command window: 
 

do lemmatizer ↵  
 

 
 

Figure 6.2 Expanded Project Manager window 
 
This packaged program can also be used within another program by simply 
issuing the statement do lemmatizer in the program where it’s needed. If 
lemmatizer.exe is not in the same folder of the table to be lemmatized, its path 
must be specified. For example, if the table to be lemmatized is in d:\fox\practice, 
but lemmatizer.exe is in d:\fox\progs, the following should be entered: 
 

do d:\fox\progs\lemmatizer 



Interactive Programming, Program Packaging and Foxpro Graphing 

 

197

 
 

Figure 6.3 The Build Options window  

6.3 Foxpro Graphs 

Foxpro has a graph wizard, which can turn data in a table into different types of 
graph using Microsoft Graph. We’ll use the table sylength in d:\fox\practice 
(produced by syllable.prg in 3.3.5) to make a pie chart of the distribution of word 
length in syllables. The procedure for making a graph is as follows: 
1. Open the table sylength. 
2. On the main Foxpro menu bar, select Tools—Wizard—Query—Graph Wizard 
and then click on OK. The Select Fields window appears as shown in Figure 6.4. 
 

 
 
Figure 6.4 The Select Field window 



Interactive Programming, Program Packaging and Foxpro Graphing 

 

198 

Click on Sylnumber to highlight it and then move it to the Selected Fields box; do 
the same to Wordnum. Click on Next to get the Define Layout window, as shown 
in Figure 6.5. 

 

 
 

Figure 6.5 The Define Layout window 
 
3. Point cursor at Sylnumber in the Available Fields box, hold down the left 
mouse button and drag Sylnumber to the Axis slot, and then drag Wordnum into 
the Data Series box. Click on OK. The Select Graph Style window appears, as 
shown in Figure 6.6.  
 

 
 

Figure 6.6 The Select Graph Style window 



Interactive Programming, Program Packaging and Foxpro Graphing 

 

199

Click on 3-D pie chart and then on Next, the Finish window appears, as shown in 
Figure 6.7. 
 

 
 
Figure 6.7 The Finish window 

 
4. Select Save graph to a table, Show null values and Add a legend to the graph 
and click on Preview. Click on Return to Wizard if the graph is satisfactory. Then 
click on Finish and save the graph in a table called vfpgraph.dbf, a default name 
provided by Foxpro. Of course we can give the table any other name as we wish. 
The graph is stored in the field olegraph, which is a general field. To use or edit 
the graph, open the table and double click on the general field, the graph appears. 
To put the graph in a word document, simply click on Copy in Edit on the Foxpro 
menu bar and paste it in the word document. It can be edited there as well. The 
3-D pie chart of word length distribution is shown in Figure 6.8. 
 

SYLENGTH

18%

35%25%

14%
6%

2%

0%
0%

0%

0% 1
2
3
4
5
6
7
8
9
10

 
 

Figure 6.8 The 3-D pie chart of word length distribution 



Interactive Programming, Program Packaging and Foxpro Graphing 

 

200 

Microsoft Graph provides a variety of graphs to choose from, and each has 
several variations. Apart from the different types of graph, we can also change 
the colour, the heading, font style, line or bar style and so on of a graph. The 
reader can do them by selecting the appropriate items of the graph editing box. 

Exercises 

1. Write a short interactive program to make a wordlist for lglass.txt in 
d:\fox\texts. The program also does the following: 
a. asks the user for the path and name of the file to be processed; 
b. asks the user for the path and name of the file for storing the results; 
c. turns the file into a frequencied wordlist; 
d. tells the user where and in what file the result is stored. 

 
2. In d:\fox\progs there is a programs stemword.prg, which can remove word 
derivational suffixes. It has the following supporting files: stopword.txt, 
wordend.txt, and wordstem.txt. These supporting files are all in d:\fox\texts. 
Package this program with its supporting files. 
 
3. Use wordclass in d:\fox\practice produced by wordclass.prg in 5.6.4 and draw 
growth curves of nouns, verbs, adjectives and adverbs using Foxpro Graph 
Wizard. 
 
4. In d:\fox\texts there is a text file words.txt containing 23,926 lemmas obtained 
from 500 2000-word random samples from the BNC written text section. Write a 
program called bncletters.prg to compute the frequency of the 26 English letters, 
put the letter frequency in descending order in a table called letterfreq and draw a 
bar chart of the distribution of the 26 letters. 



Appendix 

I.  Model Answers to Selected Exercises 

Exercises of Chapter 1 

Exercise 3 
a. ttr=100*1200/2000 ↵ 

?ttr ↵ 
60 

b. ttrx=(400 + 1200-(1000*1200)/2000)/2000 ↵ 
?ttrx ↵ 
0.5 

 
Exercise 4 
The predicted number of CN formed with words of syllable length 1: 
30.2693*1**-2.3212 = 30.2693. 
The predicted number of CN formed with words of syllable length 2: 
30.2693*2**-2.3212 = 6.0569. 
The predicted number of CN formed with words of syllable length 3: 
30.2693*3**-2.3212 = 2.3632. 
The predicted number of CN formed with words of syllable length 4: 
30.2693*4**-2.3212 = 1.213. 
The predicted number of CN formed with words of syllable length 5: 
30.2693*5**-2.3212 = 0.722. 
 
Exercise 5 
First set decimal to 6. 
a. Add-one smoothing 

Smoothed probability of inside out: 
?(3+1)/(23+13500) ↵ 
0.00296 
Smoothed probability of happy time 
?(2+1)/(45+13500) ↵ 
0.000221 

b. Good-Turing estimation 
Smoothed probability of run rampant 
?(1+1)*2331/10043/145 ↵ 
0.003201 
Smoothed probability of strong tea 
?(3+1)*523/1125/76 
0.024466 

 



Appendix 

 

202 

Exercise 6 
Use the following combined functions to do the transformation: rtod (asin 
(sqrt( ))). For example, to transform 12%, type: 

rtod(asin(sqrt(0.12))) ↵ 
The result is 20.27. The rest of the data after the transformation are 22.79, 24.35, 
26.57, 27.97, 31.31, 33.21, 35.67, 36.27, 38.65, 39.23, 41.55 
 
Exercise 7 
Tuldava: 

v=1000000*2.71828**(-0.009152*log(1000000)**2.3057) ↵ 
?v ↵ 
20279.17083 

Guiraud, Sánchez & Cantos:  
v=65.7365677*sqrt(1000000) ↵ 
?v ↵ 
65736.5677 
 

Exercise 8 
a. h=100*(log(98000)/(1-(3473/98000))) ↵ 

?h ↵ 
1191.4975 

b. h=100*(log(182000)/(1-(4336/182000))) ↵ 
?h ↵ 
1240.7357 
 

Exercise 9 
First, enter the following in the command window: 

modify command arclength ↵  
an empty file called arclength.prg appears. Enter the following in the file (note 
the carriage return after each semi-colon); save it and then run it by clicking on 
the red exclamation mark on the menu bar. 

?((1635-872)**2+1)**(1/2)+((872-825)**2+1)**(1/2)+((825-730)**2+1)**; 
(1/2)+((730-687)**2+1)**(1/2)+((687-540)**2+1)**(1/2)+((540-531)**2+; 
1)**(1/2)+((531-528)**2+1)**(1/2)+((528-513)**2+1)**(1/2)+((513-410); 
**2+1)**(1/2)+((410-398)**2+1)**(1/2)+((398-367)**2+1)**(1/2)+((367-; 
364)**2+1)**(1/2)+((364-315)**2+1)**(1/2)+((315-274)**2+1)**(1/2)+(; 
(274-263)**2+1)**(1/2)+((263-247)**2+1)**(1/2)+((247-211)**2+1)**(; 
1/2)+((211-194)**2+1)**(1/2)+((194-182)**2+1)**(1/2) 
1453.69 
 

Exercise 10 
?100938.3*2248**3-7754/5.56+(3400/2578)**(1/4)*(1102-331)**(12-8) ↵ 



Appendix 

 

203

1147065721994803 

Exercises of Chapter 2 

Exercise 3 
use wordlist ↵ 
copy to temp for mod(recn(),2)=0 ↵ 
 

Exercise 4 
use d:\fox\table3\wordlist ↵ 
copy to temp for word='Ex' ↵ 
copy to temp for right(alltrim(word),2)='ed' ↵ 
 

Exercise 5 
create table zipf(word c(25),freq n(7),rank n(5)) ↵ 
append from wordlist field word,freq ↵ 
index on freq tag freq descending ↵ 
copy to temp ↵ 
zap ↵ 
append from temp ↵ 
replace all rank with recno()↵ 
 

Exercise 6 
textchunk.prg 
1. set default to d:\fox\practice 
2. set safe off 
3. create table textchunk(names c(25),contents m(4)) 
4. for i=1 to 48 
5. texts='d:\fox\texts\text'+alltrim(str(i))+'.txt' 
6. append blank 
7. replace names with texts 
8. append memo contents from &texts 
9. endfor 
10. brow 

 
Exercise 7 
binomial.prg 
1. n=6 
2. r=3 
3. p=0.5 
4. n1=1 
5. r1=1 



Appendix 

 

204 

6. nr=1 
7. for j=1 to n 
8. n1=n1*j 
9. endfo 
10. for k=1 to r 
11. r1=r1*k 
12. endfo 
13. for m=1to(n-r) 
14. nr=nr*m 
15. endfor 
16. b=(n1/(nr*r1))*p**r*(1-p)**(n-r) 
17. ?b 

 
Exercise 8 
Enter the following in the command window: 
create table fit(tokens n(6),vocgrowth n(6),brunet n(6),herdan n(8,2),guiraud 
n(8,2),orlov n(8,2)) 
append from d:\fox\practice\vocincrease field tokens,vocgrowth   
replace all brunet with 0.03315956*log(tokens)**6.017229305   
replace all herdan with 65.73656*tokens**0.4291  
replace all guiraud with 24.706408821*sqrt(tokens)   
replace all orlov with (132000*(log(132000)-log(tokens))*tokens)/((log (132000) 
+1.483699120)*(132000-tokens))  

 
Exercise 9 
vocinfo.prg 
1. set default to d:\fox\practice 
2. set safe off 
3. close data 
4. clear 
5. set talk off 
6. nothing='' 
7. carriage=chr(13) 
8. spaces=' ' 
9. freqfield=nothing 
10. for i=1 to 48 
11. freqfield=freqfield+'freq'+alltrim(str(i))+' n(6),' 
12. endfor 
13. tablename='vocinfo(word c(25),'+'totalfreq n(6),'+'rng 

n(6),'+freqfield+'wlength n(4))' 
14. create table &tablename 
15. recordnumber=0 
16. for i=1 to 48 



Appendix 

 

205

17. texts='d:\fox\texts\text'+alltr(str(i))+'.txt' 
18. frequency='freq'+alltrim(str(i)) 
19. textinput=filetostr('&texts') 
20. textinput=strtran(textinput,'-',spaces) 
21. textinput=strtran(textinput,spaces,carriage) 
22. strtofile(textinput,'temp.txt') 
23. append from temp.txt sdf 
24. replace all &frequency with 1 for recno()>recordnumber 
25. recordnumber=reccount() 
26. endfor 
27. delete all for word=spaces 
28. pack 
29. replace all word with chrtran(word,',.`[?]_”!:;()*',nothing) 
30. replace all word with strtran(word,”'”,nothing) 
31. replace all word with prop(word) 
32. replace all totalfreq with 1 
33. index on word tag word 
34. total to temp on word 
35. zap 
36. append from temp 
37. delete all for word=spaces 
38. pack 
39. replace all wlength with len(alltrim(word)) 
40. freqfield=nothing 
41. for i=1 to 48 
42. freqfield=freqfield+'round('+'freq'+alltr(str(i))+'/('+'freq'+alltr(str(i))+'+1),0)+

' 
43. endfor 
44. freqfield=left(freqfield,len(freqfield)-1) 
45. repl all rng with &freqfield 
46. copy to temp field word,freq44 for freq44>0 
 
Exercise 10 
a. inde on right(alltrim(word),len(alltrim(word))-1) tag word 
b. inde on right(alltr(word),1) tag word 

Exercises of Chapter 3 

Exercise 1 
80incr.prg 
1. clos data 
2. set defa to d:\fox\practice 
3. set safe off 



Appendix 

 

206 

4. set deci to 4 
5. clear 
6. addfield=''&&no space between the quotes 
7. ex=0 
8. use d:\fox\table3\80vgrowth 
9. copy to 80vgrowth 
10. use 80vgrowth 
11. alter table 80vgrowth add sdv n(8,4) add mean n(8,4) add lower n(8,4) add 

upper n(8,4) 
12. do while not eof() 
13. for i=1 to 80 
14. addfield=addfield+'incr'+alltr(str(i))+'+' 
15. endfor 
16. addfield=left(addfield,rat('+',addfield)-1) 
17. meangrowth=(&addfield)/80 
18. for i=1 to 80 
19. fieldname='incr'+alltr(str(i)) 
20. ex=ex+(&fieldname-meangrowth)**2 
21. endfor 
22. replace sdv with sqrt(ex/80) 
23. replace mean with meangrowth 
24. skip 
25. addfield=''&&empty addfield 
26. ex=0 
27. enddo 
28. replace all lower with mean-1.96*sdv 
29. replace all upper with mean+1.96*sdv  
 
Exercise 2 
First create a two-field table called arclength. Name the first field fr, 6 digits in 
width; the second mathresult, 10 digits in width, with 4 decimal places. Then 
input the rank frequencies in fr field. The program is as follows. 
arclengthb.prg 
1. close data 
2. use arclength 
3. do while not eof() 
4. freqrankr=fr 
5. skip 
6. freqrankn=fr 
7. compute=((freqrankr-freqrankn)**2+1)**(1/2) 
8. replace mathresult with compute 
9. enddo 
10. sum mathresult to summathresult 



Appendix 

 

207

11. ?summathresult 
 

Exercise 3 
semiaux.prg 
1. set default to d:\fox\practice 
2. set safety off 
3. clear 
4. close data 
5. create table semiaux(aux c(30),freq n(4)) 
6. create table sentence(sent1 c(250),sent2 c(250),sent3 c(250),sent m(4)) 
7. auxexpl=''&&no space between the quotes 
8. number=0 
9. tabs=chr(9) 
10. linebreak=chr(10) 
11. carriage=chr(13) 
12. spaces=chr(32) 
13. textinput=filetostr('d:\fox\texts\alice.txt')+filetostr('d:\fox\texts\lglass.txt') 
14. textinput=strtr(textinput,carriage+linebreak,spaces) 
15. textinput=strtr(textinput,spaces+spaces,carriage) 
16. textinput=strtr(textinput,'.)',').'+carriage) 
17. textinput=strtr(textinput,”!'”,”'!”+carriage) 
18. textinput=strtr(textinput,”?'”,”'?”+carriage) 
19. textinput=strtr(textinput,'.','.'+carriage) 
20. textinput=strtr(textinput,'?','?'+carriage) 
21. textinput=strtr(textinput,'!','!'+carriage) 
22. strtofil(textinput,'temp.txt') 
23. select 2 
24. append from temp.txt sdf for sent1<>spaces 
25. replace all sent with alltr(sent1+sent2+sent3) 
26. select 1 
27. append from d:\fox\texts\semiaux.txt sdf 
28. go top 
29. do while not eof() 
30. auxiliary=lower(alltr(aux)) 
31. select sent from sentence where like('*'+auxiliary+'*',lower(sent)) into table 

temp 
32. counter=reccount() 
33. if counter>0 
34. number=number+1 
35. auxexpl=auxexpl+'('+alltr(str(number))+'). '+upper(auxiliary)+carriage 
36. replace all sent with strtr(lower(sent),lower(auxiliary),'** 

'+upper(auxiliary)+' **') 
37. go top 



Appendix 

 

208 

38. do while not eof() 
39. getsemiaux=alltr(sent) 
40. auxexpl=auxexpl+tabs+alltr(str(recn()))+'. '+getsemiaux+carriage 
41. skip 
42. enddo 
43. auxexpl=auxexpl+carriage 
44. endif 
45. select 1 
46. replace freq with counter 
47. skip 
48. enddo 
49. strtofile(auxexpl,'result.txt') 
50. modify file result.txt 

 
Exercise 4 
morethan.prg 
1. set default to d:\fox\practice 
2. set safety off 
3. close data 
4. morethantext='' 
5. number=0 
6. number=0 
7. linebreak=chr(10) 
8. carriage=chr(13) 
9. spaces=chr(32) 
10. create table sentence(sent1 c(250),sent2 c(250),sent3 c(250),sent m(4)) 
11. textinput=filetostr('d:\fox\texts\alice.txt')+filetostr('d:\fox\texts\lglass.txt') 
12. textinput=strtr(textinput,carriage+linebreak,spaces) 
13. textinput=strtr(textinput,spaces+spaces,carriage) 
14. textinput=strtr(textinput,'.)',').'+carriage) 
15. textinput=strtr(textinput,”!'”,”'!”+carriage) 
16. textinput=strtr(textinput,”?'”,”'?”+carriage) 
17. textinput=strtr(textinput,'.','.'+carriage) 
18. textinput=strtr(textinput,'?','?'+carriage) 
19. textinput=strtr(textinput,'!','!'+carriage) 
20. strtofil(textinput,'temp.txt') 
21. append from temp.txt sdf for sent1<>spaces 
22. replace all sent with alltr(sent1+sent2+sent3) 
23. select sent from sentence where like('*more*than *',lower(sent)) into table 

temp &&note the space between than and * 
24. replace all sent with strtr(sent,'more', '**MORE') 
25. replace all sent with strtr(sent,'More', '**MORE') 
26. replace all sent with strtr(sent,'than', 'THAN**') 



Appendix 

 

209

27. go top 
28. do while not eof() 
29. morethantext=morethantext+alltr(str(recn()))+'. '+alltr(sent)+carriage 
30. skip 
31. enddo 
32. strtofile(morethantext,'more.txt') 
33. modif file more.txt 

 
Exercise 5 
a. copy to new for like('*ship',alltr(word)) or like('*hood',alltr(word)) or 

like('*craft',alltr(word)) or like('*dom',alltr(word)) ↵ 
b. replace all word with replicate(' ',25/2-len(alltrim(word))/2)+alltr(word) ↵ 
c. replace all word with replicate(' ',25-len(alltrim(word)))+alltr(word) ↵ 
d. replace all word with alltrim(word) ↵  
 
Exercise 6 
likelihood_get 
1. set default to d:\fox\practice 
2. set safe off 
3. set talk off 
4. set decimal to 8 
5. clear 
6. create table wordtoken(word c(25),freq n(8)) 
7. create table kwictable (context c(120),freq n(5)) 
8. create table likehood (context c(25),freq1 n(4),freq2 n(4),lkhratio n(14,8)) 
9. close data 
10. nothing='' 
11. kwic=nothing 
12. carriage=chr(13) 
13. spaces=chr(32) 
14. textinput=filetostr('d:\fox\texts\lglass.txt') 
15. textinput=strtran(textinput,'-',spaces) 
16. textinput =strtran(textinput,spaces,carriage) 
17. strtofile(textinput,'temp.txt') 
18. select 1 
19. use wordtoken 
20. append from temp.txt sdf for word<>spaces 
21. n=reccount()&&the total number of word tokens, needed in likelihood ratio 
22. go top 
23. scan for lower(alltr(word))=='get' or lower(alltr(word))=='gets' or 

lower(alltr(word))=='getting' or lower(alltr(word))=='got' 
24. replace word with upper(word) 
25. keyword=alltrim(word) 



Appendix 

 

210 

26. skip -5 
27. for i=1 to 11 
28. kwic=kwic+alltrim(word)+spaces 
29. skip 
30. endfor 
31. sele 2 
32. use kwictable 
33. append blank 
34. keywordposition=at(keyword, kwic) 
35. replace context with replicate(spaces,45-keywordposition)+kwic 
36. kwic=nothing 
37. sele 1 
38. endscan 
39. sele 2 
40. inde on righ(context,75) tag context 
41. copy to get.txt sdf field context 
42. copy to temp 
43. select 3 
44. use temp 
45. replace all context with strtr(context,left(context,45),nothing) 
46. replace all context with 

strtran(context,left(context,at(spaces,context)),nothing) 
47. replace all context with left(context,at(spaces,context)) 
48. select 3 
49. use likehood 
50. append from temp 
51. replace all context with chrtr(context,'.,:;”()-`*[?]_!',nothing) 
52. replace all context with strtr(context,”'”,nothing) 
53. replace all context with proper(context) 
54. replace all freq2 with 1 
55. index on context tag context 
56. total to temp on context 
57. zap 
58. append from temp 
59. select 1&&access the table wordtoken 
60. replace all freq with 1 
61. index on word tag word 
62. total to temp on word 
63. zap 
64. append from temp 
65. replace all word with chrtr(word,'.,:;()-[?]_`*”!',nothing) 
66. replace all word with strtr(word,”'”,nothing) 
67. replace all word with prop(word) 



Appendix 

 

211

68. inde on word tag word 
69. total to temp on word 
70. zap 
71. append from temp for word<>spaces 
72. sum freq to c1 for alltr(word)=='Get' or alltr(word)=='Gets' or 

alltr(word)=='Getting' or alltr(word)=='Got' 
73. select 3 &&access the table likehood 
74. go top 
75. do while not eof() 
76. getword=alltr(context) 
77. select 1 
78. locate for alltr(word)==getword 
79. collocatefreq=freq 
80. select 3 
81. replace freq1 with collocatefreq 
82. skip 
83. enddo 
84. select 3 
85. dele all for freq1=0 
86. pack 
87. go top 
88. do while not eof() 
89. c12=freq2 
90. c2=freq1 
91. p=c2/n 
92. p1=c12/c1 
93. if c2-c12=0 
94. p2=(c2+0.01-c12)/(n-c1)&&0.01 is added in cases c1=c2, p2 will be 0 and 

the program will crash! 
95. else 
96. p2=(c2-c12)/(n-c1) 
97. endif 
98. lkhvalue=log(p)*c12+log(1-p)*(c1-c12)+log(p)*(c2-c12)+log(1-p)*((n-c1)-(

c2-c12))-log(p1)*c12-log(1-p1)*(c1-c12)-log(p2)*(c2-c12)-log(1-p2)*((n-c1
)-(c2-c12)) 

99. repl lkhratio with lkhvalue*-2 
100. skip 
101. enddo 
102. index on lkhratio tag lkhratio descending 
103. brow 

 
Exercise 7 
t_test.prg 



Appendix 

 

212 

1. set default to d:\fox\practice 
2. set safe off 
3. set talk off 
4. set decimal to 8 
5. clear 
6. create table wordtoken(word c(25),freq n(8)) 
7. create table kwictable (context c(120),freq n(5)) 
8. create table tablemake (context c(25),freq1 n(4),freq2 n(4),tvalue n(14,8)) 
9. close data 
10. nothing='' 
11. kwic=nothing 
12. carriage=chr(13) 
13. spaces=chr(32) 
14. textinput=filetostr('d:\fox\texts\lglass.txt') 
15. textinput=strtran(textinput,'-',spaces) 
16. textinput =strtran(textinput,spaces,carriage) 
17. strtofile(textinput,'temp.txt') 
18. select 1 
19. use wordtoken 
20. append from temp.txt sdf for word<>spaces 
21. n=reccount()&&the total number of word tokens, needed in likelihood ratio 
22. go top 
23. scan for lower(alltr(word))=='make' or lower(alltr(word))=='makes' or 

lower(alltr(word))=='making' or lower(alltr(word))=='made' 
24. replace word with upper(word) 
25. keyword=alltrim(word) 
26. skip -4 
27. for i=1 to 9 
28. kwic=kwic+alltrim(word)+spaces 
29. skip 
30. endfor 
31. sele 2 
32. use kwictable 
33. append blank 
34. keywordposition=at(keyword, kwic) 
35. replace context with replicate(spaces,40-keywordposition)+kwic 
36. kwic=nothing 
37. sele 1 
38. endscan 
39. sele 2 
40. inde on righ(context,80) tag context 
41. copy to make.txt sdf field context 
42. copy to temp 



Appendix 

 

213

43. select 3 
44. use temp 
45. replace all context with strtr(context,left(context,40),nothing) 
46. replace all context with 

strtran(context,left(context,at(spaces,context)),nothing) 
47. replace all context with left(context,at(spaces,context)) 
48. select 3 
49. use tablemake 
50. append from temp 
51. replace all context with chrtr(context,'.,:;”()-`*[?]_!',nothing) 
52. replace all context with strtr(context,”'”,nothing) 
53. replace all context with proper(context) 
54. replace all freq2 with 1 
55. index on context tag context 
56. total to temp on context 
57. zap 
58. append from temp 
59. select 1&&access the table wordtoken 
60. replace all freq with 1 
61. index on word tag word 
62. total to temp on word 
63. zap 
64. append from temp 
65. replace all word with chrtr(word,'.,:;()-[?]_`*”!',nothing) 
66. replace all word with strtr(word,”'”,nothing) 
67. replace all word with prop(word) 
68. inde on word tag word 
69. total to temp on word 
70. zap 
71. append from temp for word<>spaces 
72. sum freq to makefreq for alltr(word)=='Make' or alltr(word)=='Makes' or 

alltr(word)=='Making' or alltr(word)=='Made' 
73. select 3 &&access the table likehood 
74. go top 
75. do while not eof() 
76. getword=alltr(context) 
77. select 1 
78. locate for alltr(word)==getword 
79. collocatefreq=freq 
80. select 3 
81. replace freq1 with collocatefreq 
82. skip 
83. enddo 



Appendix 

 

214 

84. select 3 
85. dele all for freq1=0 
86. pack 
87. go top 
88. do while not eof() 
89. xbar=freq2/n 
90. mu=(freq1/n)*(makefreq/n) 
91. s2=xbar 
92. repl tvalue with (xbar-mu)/sqrt(s2/n) 
93. skip 
94. enddo 
95. inde on tvalue tag tvalue descending 
96. brow 

 
Exercise 9 
hapdis.prg 
1. set default to d:\fox\practice 
2. set safe off 
3. set talk off 
4. close data 
5. clear 
6. use multitext 
7. create table hapdislego (texts c(10),vocsize n(6,2),hapsize n(6,2),dissize 

n(6,2), hdratio n(6,2),mhlength n(6,2),mdislength n(6,2)) 
8. for i=1 to 48 
9. select 1 &&access multitex open in work area 1 
10. wordfield='text'+alltr(str(i)) 
11. freqfield='freq'+alltr(str(i)) 
12. count to hapaxnumber for &freqfield=1 
13. count to disnumber for &freqfield=2 
14. count to vocnumber for &freqfield>0 
15. ratio=disnumber/hapaxnumber 
16. average wlength to meanhaplength for &freqfield=1 
17. average wlength to meandislength for &freqfield=2 
18. sele 2&&access texthapax open in work area 2 
19. append blank 
20. replace texts with wordfield 
21. replace vocsize with vocnumber 
22. replace hapsize with hapaxnumber 
23. replace dissize with disnumber 
24. replace hdratio with ratio 
25. repl mhlength with meanhaplength 
26. replace mdislength with meandislength 



Appendix 

 

215

27. endfor 
28. set talk on 
29. calculate avg(vocsize),avg(hapsize),avg(dissize), avg(hdratio), 

avg(mhlength), avg (mdislength) 
30. calculate min(vocsize),min(hapsize),min(dissize),min(hdratio), 

min(mhlength), min (mdislength) 
31. calculate max(vocsize),max(hapsize),max(dissize),max(hdratio), max 

(mhlength), max(mdislength) 
32. calculate std(vocsize),std(hapsize),std(dissize) 

 
Exercise 10 
wordcoverage.prg 
1. set default to d:\fox\practice 
2. set safe off 
3. close data 
4. clear 
5. set talk off 
6. nothing='' 
7. carriage=chr(13) 
8. spaces=chr(32) 
9. create table temp1(word c(25),freq n(8)) 
10. append from d:\fox\table3\wordlistb 
11. replace all freq with 100000&&for picking out covered words 
12. create table temp2(word c(25),freq n(8)) 
13. create table wordcoverage(textname c(25),tokens n(5),coveredw 

n(6),coverage n(6,2)) 
14. select 2 && access temp2 
15. for i=1 to 48 
16. texts='d:\fox\texts\text'+alltr(str(i))+'.txt' 
17. textinput=filetostr('&texts') 
18. textinput=strtran(textinput,'-',spaces) 
19. textinput=chrtran(textinput,',.`[?]_”!:;()*',nothing) 
20. textinput=strtr(textinput,”'”,nothing) 
21. textinput=strtran(textinput,spaces,carriage) 
22. strtofile(textinput,'temp.txt') 
23. append from temp.txt sdf for word<>spaces 
24. tokennumber=reccount()&&get total number of tokens of a text 
25. replace all freq with 1 
26. replace all word with proper(word) 
27. append from temp1&&wordlistb 
28. index on word tag word 
29. total to temp on word 
30. zap 



Appendix 

 

216 

31. append from temp 
32. sum mod(freq,100000) to wordscovered for freq>100000&&words in temp2 

with frequency>100000 are covered words. mod(freq,100000) gets their real 
frequency 

33. coverageratio=wordscovered/tokennumber 
34. select 3&&access wordcoverage 
35. append blan 
36. replace textname with texts 
37. replace tokens with tokennumber 
38. replace coveredw with wordscovered 
39. replace coverage with coverageratio 
40. select 2 
41. zap&&remove old contents for another text 
42. endfor 
43. select 3 
44. set talk on 
45. calculate avg(tokens), avg(coveredw),avg(coverage) 
46. calculate min(coveredw),min(coverage) 
47. calculate max(coveredw),max(coverage) 
48. calculate std(coveredw),std(coverage) 

Exercises of Chapter 4 

Exercise 1 
repl all word with padl(rtrim(word),25,' ') ↵ 
or 
repl all word with space(25-len(rtrim(word)))+word ↵ 
or 
repl all word with replic(' ',(25-len(rtrim(word))))+word ↵ 
 
Exercise 2 
use asc() to detect the unseen character, then remove it and correct the mistake in 
word length. 
 
Exercise 3 
The program is as follows: 
setrelation.prg 
1. set defa to d:\fox\practice 
2. set safe off 
3. select 1 
4. use aliceword 
5. index on word tag word 
6. select 2 



Appendix 

 

217

7. use annotatedword 
8. index on word tag word 
9. set relation to word into aliceword 
10. copy to temp fields word,freq,rng,a.wlength,wordinfo 
11. use temp 
12. browse 
 
Exercise 4 
cjustb.prg 
1. set defa to d:\fox\practice 
2. close data 
3. set safe off 
4. create table poem2(lines c(80)) 
5. spaces=chr(32) 
6. append from d:\fox\texts\poem.txt sdf 
7. replace all lines with padc(alltrim(lines),80,spaces) 
8. copy to cjustify2.txt sdf 
9. modify file cjustify2.txt 
 
Exercise 5 
removechapter.prg 
1. set default to d:\fox\practice 
2. nothing='' 
3. textinput=filetostr('d:\fox\texts\alice.txt') 
4. do while 'CHAPTER'$textinput 
5. textinput=stuff(textinput,at('CHAPTER',textinput),11,nothing) 
6. enddo 
7. strtofile(textinput,'temp.txt') 
8. modify file temp.txt 
 
Exercise 6 
a.  
repl all word with alltrim(subs(word,at(' ',word),25-len(rtrim(word))))+' '+substr 
(word,1,at(' ',word)) ↵ 
b.  
zap 
appe from d:\fox\table3\postable 
repl all word with stuff(word,1,at(' ',word),'') ↵ 
inde on word tag word ↵ 
total to temp on word ↵ 
zap ↵ 
appe from temp ↵ 
 



Appendix 

 

218 

Exercise 7 
nouns.prg 
1. set defa to d:\fox\practice 
2. set safe off 
3. clos data 
4. creat table postag(word c(40),freq n(8)) 
5. spaces=chr(32) 
6. for i=1 to 50 
7. tablename='d:\fox\table1\bncst'+alltr(str(i)) 
8. appe from &tablename for word<>spaces 
9. endfor 
10. repl all word with 

alltrim(subs(word,rat(spaces,rtrim(word)),40-len(rtrim(word)))) 
11. inde on word tag word 
12. tota to temp on word 
13. zap 
14. append from temp for word<>spaces 
15. sum freq to nouns for 'NN'$word 
16. sum freq to tokens 
17. ?nouns/tokens 
 
Exercise 8 
product.prg 
1. set default to d:\fox\practice 
2. create table multiplication(numbers c(25),result n(6)) 
3. append from d:\fox\texts\multiplication.txt sdf 
4. replace all numbers with strtr(numbers,'X','*') 
5. replace all result with evaluate(numbers) 
6. replace all numbers with rtrim(strtr(numbers,'*','X'))+' '+'='+ltrim (str 

(result)) 
7. copy to temp.txt field numbers sdf 
8. modi file temp.txt 
 
Exercise 9 
fputs.prg 
1. set defa to d:\fox\practice 
2. close data 
3. newtext=fcreat('temp.txt') 
4. carriage=chr(13) 
5. spaces=chr(32) 
6. for i=1 to 48 
7. texttitle='TEXT '+ alltrim(str(i)) 
8. texts='d:\fox\texts\text'+alltr(str(i))+'.txt' 



Appendix 

 

219

9. fhandle=fopen('&texts') 
10. flsize=fseek(fhandle,0,2) 
11. fseek(fhandle,0) 
12. gettexts=padl(texttitle,35,spaces)+carriage+fread(fhandle,flsize)+carriage 
13. fputs(newtext,gettexts) 
14. endfor 
15. close all 
16. modi file temp.txt 
 
Exercise 10 
xmltext.prg 
1. set default to d:\fox\practice 
2. set safety off 
3. close data 
4. create table sentence(sent1 c(250),sent2 c(250),sent3 c(250)) 
5. create table wordlist(word c(25),freq n(5)) 
6. nothing='' 
7. carriage=chr(13) 
8. spaces=chr(32) 
9. textinput=filetostr('d:\fox\texts\text1.xml') 
10. textinput=strtr(textinput,'<',carriage) 
11. strtofil(textinput,'temp.txt') 
12. select 1 
13. append from temp.txt sdf 
14. replace all sent1 with alltrim(sent1) 
15. delete all for sent1<>'w:t>' 
16. pack 
17. replace all sent1 with stuff(sent1,1,at('>',sent1),nothing) 
18. copy to temp.txt fields sent1,sent2,sent3 sdf 
19. textinput=filetostr('temp.txt') 
20. textinput=strtran(textinput,'-',spaces) 
21. textinput=strtran(textinput,spaces,carriage) 
22. strtofile(textinput,'temp.txt') 
23. select 2 
24. append from temp.txt sdf for word<>spaces 
25. replace all word with chrtran(word,',.`[?]_”!:;()*',nothing) 
26. replace all word with strtran(word,”'”,nothing) 
27. replace all word with proper(word) 
28. replace all freq with 1 
29. index on word tag word 
30. total to temp on word 
31. zap 
32. append from temp 



Appendix 

 

220 

33. brow 

Exercises of Chapter 5 

Exercise 1 
alicearray.prg 
1. set default to d:\fox\practice 
2. create table temp(word c(25),freq n(4)) 
3. dimension alicearray(2615,2) 
4. use awordlist 
5. for i=1 to 2615 
6. alicearray(i,1)=word 
7. alicearray(i,2)=freq 
8. skip 
9. endfor 
*Sort the 2615 elements in the second column in descending order. 
10. asort(alicearray,2,2615,1) 
11. use temp 
12. append from array alicearray 
 
Exercise 2 
awordlistb.prg 
1. set default to d:\fox\practice 
2. set safety off 
3. close data 
4. create table awordlist (word c(25),freq n(10),wlength n(4)) 
5. nothing='' 
6. spaces=chr(32) 
7. carriage=chr(13) 
8. textinput=filetostr('d:\fox\texts\alice.txt') 
9. do tokenizer 
10. totalize('word') 
11. replace all wlength with len(alltrim(word)) 
12. delete all for len(alltrim(word))=0  &&this removes empty records 
13. pack 
14. copy to awordlist.txt sdf 
15. procedure tokenizer 
16. textinput=strtran(textinput,'-',spaces) 
17. textinput=strtran(textinput,spaces,carriage) 
18. strtofile(textinput,'temp.txt') 
19. append from temp.txt sdf 
20. replace all word with chrtran(word,',.`[?]_”!:;()*',nothing) 
21. replace all word with strtran(word,”'”,nothing) 



Appendix 

 

221

22. replace all word with prop(word) 
23. replace all freq with 1 
24. return 
25. function totalize 
26. parameters wordfield 
27. index on &wordfield tag &wordfield 
28. total to temp on &wordfield 
29. zap 
30. append from temp 
31. return 
 
Exercise 3 
dicecast.prg 
*This program simulates die casts using an array. 
1. clear 
2. set defa to d:\fox\practice 
3. clos data 
4. set deci to 1 
5. set safe off 
*Create a temporary table for recording each outcome of a throw. 
6. creat cursor castdice(points c(4)) 
*Table dice is for number of throws, die points of each throw and the  
*cumulative number of each of the six die points as the number of throws  
*increases. 
7. creat table dice(casts n(4),points c(1),increase n(4)) 
*Creating a 6 x 2 array for the six different points of a die and six random  
*numbers. 
8. dimension dice(6,2) 
9. for throw=1 to 50 &&50 throws 
10. for dicepoint=1 to 6 &&for the six different die points 
11. dice(dicepoint,1)=rand() 
12. dice(dicepoint,2)=dicepoint 
13. endfor 
*Simulate die throwing. 
14. asort(dice) 
15. sele 1 
16. appen blan 
*Taking dice(1,2) as the outcome of a throw. 
17. repl points with alltr(str(dice(1,2))) 
18. inde on points tag points 
19. tota to temp on points 
20. zap 
21. appe from temp 



Appendix 

 

222 

*Calculates the growth of the different types of outcomes. 
22. differentpoints=recc() 
23. sele 2 
24. appe blan 
25. repl increase with differentpoints 
26. repl points with alltr(str(dice(1,2))) 
27. endfo 
28. sele 2 
29. repl all casts with recn() 
30. brow 
 
Exercise 4 
randomposition.prg 
*This program uses do case to select text chunks of about 100 words in length  
*from different places of the source texts randomly. The 48 randomly drawn  
*samples are then named sample1.txt, sample2.txt, sample3.txt...sample48.txt  
*and outputted. 
1. set defa to d:\fox\practice 
2. set safe off 
3. clos data 
4. clear 
5. set decimals to 0 
6. nothing='' 
7. for i=1 to 48 
8. textname='d:\fox\texts\text'+alltr(str(i))+'.txt' 
*outputsample is the variable for the name of sample1.txt, sample2.txt etc. 
9. outputsample='sample'+alltr(str(i))+'.txt' 
10. textinput=filetos('&textname') 
*Meaure length of textinput. 
11. textlength=len(textinput) 
*Divide textlenth into 4 parts. 
12. chunklength=int(textlength/4) 
*Generate random number between 0 and 100. 
13. randomnumber=rand()*100 
*The following do case statements randomly sample text chunks at 4 different  
*positions of the source texts. 
14. do case 
15. case randomnumber<26 
16. randomsample=subs(textinput,1,chunklength)&&sampling from beginning 

of a text if the random number<26 
*The following ensures that randomsample does not end in the middle of a 、
*word. 
17. randomsample=stuff(randomsample,rat(' ',randomsample),1000,nothing) 



Appendix 

 

223

18. case randomnumber>25 and randomnumber<51 
19. randomsample=subs(textinput,chunklength,chunklength)&&sampling a 

chunklength away from beginning 
20. randomsample=stuff(randomsample,1,at(' ',randomsample), nothing) && 

ensure the sample begins with a complete word 
21. randomsample=stuff(randomsample,rat(' ',randomsample),1000,nothing) 
22. case randomnumber>50 and randomnumber<76 
23. randomsample=subs(textinput,chunklength*2,chunklength) 
24. randomsample=stuff(randomsample,1,at(' ',randomsample),nothing) 
25. randomsample=stuff(randomsample,rat(' ',randomsample),1000,nothing) 
26. case randomnumber>75 
27. randomsample=subs(textinput,chunklength*3,textlength) 
28. randomsample=stuff(randomsample,1,at(' ',randomsample),nothing) 
29. randomsample=stuff(randomsample,rat(' ',randomsample),1000,nothing) 
30. endcase 
31. strtof(randomsample,'&outputsample') 
32. endfor 
 
Exercise 5 
lexcompare.prg 
1. set default to d:\fox\practice 
2. set safety off 
3. close data 
4. gettext('d:\fox\texts\alice.txt') 
5. copy to awordlist 
6. use awordlist 
7. do getlemma 
8. gettext('d:\fox\texts\lglass.txt') 
9. copy to lwordlist 
10. use lwordlist 
11. do getlemma 
12. do compareword 
13. function gettext 
14. parameters filename 
15. create cursor wordlist (word c(30),freq n(10),wlength n(4)) 
16. nothing='' 
17. spaces=chr(32) 
18. carriage=chr(13) 
19. textinput=filetostr(filename) 
20. textinput=strtran(textinput,'-',spaces) 
21. textinput=strtran(textinput,spaces,carriage) 
22. strtofile(textinput,'temp.txt') 
23. append from temp.txt sdf 



Appendix 

 

224 

24. replace all word with chrtran(word,',.`[?]_”!:;()*',nothing) 
25. replace all word with strtran(word,”'”,nothing)&&there is a single quote 

between the double quotes 
26. replace all word with prop(word) 
27. replace all freq with 1 
28. index on word tag word 
29. total to temp on word 
30. zap 
31. append from temp for word<>spaces 
32. replace all wlength with len(alltrim(word)) 
33. return 
34. procedure compareword 
35. create table aliceglass (word c(25),freq n(12,5)) 
36. append from awordlist 
37. replace all freq with freq*100000 
38. append from lwordlist 
39. index on word tag word 
40. total to temp on word 
41. zap 
42. append from temp 
43. copy to shareword for mod(freq,100000)>0 and freq>100000 
44. copy to aliceonly for mod(freq,100000)=0 
45. copy to lglassonly for freq<100000 
46. copy to lglassonly.txt for freq<100000 
47. use aliceonly 
48. replace all freq with freq/100000 
49. copy to aliceonly.txt sdf 
50. use shareword 
51. replace all freq with freq/100000 
52. copy to shareword.txt sdf 
53. return 
 
Exercise 6 
overlap.prg 
*This program measures vocabulary overlap between 25 pairs of bnc tables. 
1. set defa to d:\fox\practice 
2. set safe off 
3. close data 
4. clear 
5. set deci to 16 
*tablename is for two table names, voc1 and voc2 are for their vocabulary  
*sizes, overlap for the vocabulary overlap. 
6. create table overlap(tablename c(70),voc1 n(5),voc2 n(5),overlap n(5)) 



Appendix 

 

225

*Create a temporary table for measuring voc1, voc2 and overlap. 
7. creat cursor temp(word c(25),marker n(10)) 
*Put all the table names into tablearray. 
8. adir(tablearray,'d:\fox\table2\bncwlem*.dbf') 
9. rand(-551) 
*Randomize the order of tables. 
10. for i=1 to 50 
11. tablearray(i,2)=rand() 
12. endfor 
13. asort(tablearray,2) 
14. for i=1 to 50 
*The following initializes twotablename for holding two table names. 
15. twotablename='' 
*Loading two tables. 
16. for ii=0 to 1 
*In the following, when i=1 and ii=0, tablearray(1,1) is assigned to  
*tabletoappend. When i=1 and ii=1, tablearray(2,1) is assigned to  
*tabletoappend, etc. 
17. i=i+ii 
18. tabletoappend='d:\fox\table2\'+tablearray(i,1) 
*The following puts two table names together separated by “:”. 
19. twotablename=twotablename+tabletoappend+' : ' 
20. append from &tabletoappend&&append to temp in work area 1 
*Get vocabulary size of first table. 
21. if ii=0 
22. table1voc=reccou() 
23. endif 
24. endfor 
*Get number of words in temp after the second table is appended. 
25. twotablewords=reccou() 
*Get vocabulary size of the second table. 
26. table2voc=twotablewords-table1voc 
27. inde on word tag word 
28. total to temp1 on word 
29. zap 
30. appe from temp1 
*Get vocabulary size of the two tables after totalling. 
31. twotablevoc=reccou() 
*Get vocabulary overlap. 
32. vocoverlap=twotablewords-twotablevoc 
33. sele 1 &&access table overlap 
34. append blan 
35. repl tablename with twotablename 



Appendix 

 

226 

36. repl overlap with vocoverlap 
37. repl voc1 with table1voc 
38. repl voc2 with table2voc 
39. sele 2 
40. zap 
41. endfor 
42. sele 1 
*Remove “:” at end of the two table names. 
43. repl all tablename with stuff(tablename,rat(':',tablename),1,'') 
44. brow 

Exercises of Chapter 6 

Exercise 4 
bncletters.prg 
1. set default to d:\fox\practice 
2. close data 
3. set safety off 
4. create table letterfreq(letters c(2),freq n(8)) 
5. textinput=filetostr('d:\fox\texts\words.txt') 
6. textinput=upper(textinput) 
7. for i=65 to 90 
8. letterfrequency=occurs(chr(i),textinput) 
9. append blank 
10. replace letters with chr(i) 
11. replace freq with letterfrequency 
12. endfor 
13. index on freq tag freq desc 
14. browse 
 

 

 

 

 

 

 



Appendix 

 

227

II. Foxpro Operators, Commands and Functions Covered in This Book 

-, 4, 6 
!=, 6 
#, 6 
$, 4, 5 
%, 6 
&, 28 
&&, 5 
*, 6, 16 
**, 6 
/, 6 
@rownnumber, columnnumber [say 

contents] [get variable], 161 
^, 6 
+, 4, 6 
<, 6 
<=, 6 
<>, 6 
=, 4, 6 
==, 4 
>, 6 
>=, 6 
abs(n), 8 
accept [string] to variable, 192 
acopy(sourcearrayname, 

targetarrayname), 148 
acos(n), 12 
adel(arrayname,elementnumber [, 2]), 

148 
adir(arrayname [, files]), 149 
afields(arrayname | [, workarea] [, 

‘alias’]) |, 144 
alen(arrayname), 146 
alltrim(string), 29 
alter table tablename [alter column 

fieldname datatype(width)] [rename 
column oldfieldname to 
newfieldname] [drop fieldname] 
[add fieldname datatype(width)], 27 

append blank, 39 
append from array arrayname [for 

condition] [fields fieldnames], 146 

append from filename | [sdf] 
[delimited with |[tab] [blank] 
[character]|] | [fieldnames] [for 
condition], 36 

append from filenames | [sdf] 
[delimited with |[tab] [blank] 
[character]|] | [fieldnames] [for 
condition], 17 

append from tablename [fieldnames] 
[for condition], 34 

append memo fieldname from 
filename [overwrite], 39 

asc(string), 103 
ascan(arrayname, string), 148 
asin(n), 13 
asort(arrayname [, columnnumber [, 

numbertosort [, sortorder]]]), 149 
at(character,string), 29 
atan(n), 13 
average [fieldname to variable] [for 

condition], 63 
between(n1, n2, n3), 10 
blank [all] [for condition], 45 
bof(), 66 
calculate [avg(fieldname)] [, 

min(fieldname)] [, max(fieldname)] 
[, std(fieldname)] [, var(fieldname)] 
[, cnt(fieldname)] [, 
sum(fieldname) ] [to variable1, 
variable2…] [for condition], 65 

cancel, 16 
cd path, 165 
ceiling(n), 10 
chr(n), 40 
chrtran(string,characters1,characters

2), 42 
close | [databases] [all] |, 25 
continue, 81 
copy memo fieldname to filename 

[additive], 52 
copy structure to tablename, 146 



Appendix 

 

228 

copy to array arrayname [field 
[fieldname1] [, fieldname2…]] [for 
condition], 145 

copy to filename [fieldnames] | [sdf] 
[delimited with |[blank] [tab] 
[character]|] | [for condition], 50 

copy to tablename [fieldnames] [for 
condition] [foxplus], 50 

count to variable for condition, 63 
create cursor tablename(fieldname1 

c(width) [, fieldname2 n(digit)] [, 
fieldname3 m(4)]…), 26 

create table tablename(fieldname1 
c(width) [, fieldname2 n(digit)] [, 
fieldname3 m(4)]…), 17, 24 

curdir(), 165 
date(), 162 
dbf(), 162 
declare arrayname1 (rows [, columns]) 

[, arrayname2 (rows [, columns])], 
142 

delete [all] [for condition], 44 
delete tag all, 48 
difference(string1,string2), 163 
dimension arrayname1(rows [, 

columns]) [, arrayname2(rows 
[,columns])], 144 

display [all] [fieldnames] [for 
condition] [to filename] [noconsole] 
[off], 51 

display memory like | [arrayname] 
[variablename] |, 143 

do procedurename, 152 
do while condition…enddo, 67 
dtor(n), 13 
empty(string), 104 
endfunc, 154 
endproc, 151 
eof(), 66 
evaluate(string), 107 
exit, 67 
exp(n), 12 
fclose(filehandle), 114 

fcreat(filename [, fileattributecode]), 
110 

feof(filehandle), 115 
fgests(filehandlenumber [, 

numberofbytes]), 113 
field(n), 162 
filetostr(‘filename’), 39 
floor(n), 9 
fopen(filename [, fileattributecode]), 

110 
for variable = n to x…endfor, 30 
found(), 85 
fputs(filehandlenumber, string [, 

numberofcharacters]), 114 
fread(filehandle, numberofbytes), 113 
fseek(filehandlenumber,bytesmoved [, 

position]), 111 
function functionname, 153 
fwrite(filehandlenumber, string [, 

numberofcharacters]), 114 
gather | [from arrayname] [memvar] 

[name variablename] | [fields 
fieldnames], 147 

go | [top] [bottom] [n] |, 65 
if condition…[else condition]…endif, 

67 
iif(condition, statement1, statement2), 

160 
index on fieldname tag fieldname 

[descending], 47 
input [string] to variable, 192 
insert blank, 39 
int(n), 9 
isalpha(string), 105 
isblank(string), 104 
isdigit(string), 104 
isleadbyte(string), 108 
islower(string), 105 
isupper(string), 105 
left(string,n), 29 
len(string), 43 
like(string1, string2), 81 
list [fieldname] [for condition] [to 



Appendix 

 

229

filename] [noconsole] [off], 51 
locate for condition, 80 
log(n), log10(n), 8 
lower(string), 46 
ltrim(string), 107 
max(n1,n2,…nx), 64 
min(n1,n2,…nx), 64 
mod(n1, n2), 11 
modify | [command [programname]] 

[file [filename]] |, 14 
modify project projectname, 195 
modify structure, 26 
pack, 45 
padc(string,n,character), 106 
padl(string,n,character), 106 
padr(stirng,n,character), 106 
parameters [parameter1] [, 

parameter2]…, 154 
pi(), 9 
private variablelist, 151 
procedure procedurename, 151 
proper(string), 46 
public variablelist, 151 
quit, 165 
rand(), 10 
rat(character,string), 29 
recall [all], 45 
reccount(), 36 
recno(), 36 
replace [all] fieldname with | [string] 

[number] | [for condition], 46 
replicate(character, n), 86 
resume, 161 
return [value], 154 
right(string,n), 29 
round(n, decimalplace), 9 
rtod(n), 13 
rtrim(string), 107 
run [externalcommand] 

[externalprogram], 165 
scan for condition…endscan, 82 
scatter [fields fieldnames] | [to 

arrayname] [memvar] [name 

variablename] |, 147 
seek(string), 83 
select | [*] [fieldnames] | from 

tablename where condition [order 
by fieldname [descending]] having 
[condition] [ | [into table tablename] 
[to filename] | ]  [additive] 
[noconsole], 85 

select workareanumber, 32 
select(), 32 
set alternate on, 163 
set alternate to filename, 163 
set decimal to, 7 
set default to path, 16 
set exact off, 4 
set exact on, 4 
set relation to, 117 
set relation to fieldname into | 

[tablename] [tablealiase] |, 115 
set safety off, 16 
set safety on, 15 
set skip to | [[tablename1] [, 

tablename2]…] [[tablealias1] [, 
tablealias2…]] |, 117 

set talk off, 16 
set talk on, 16 
set udfparms to reference, 154 
set udfparms to value, 154 
sin(n), 12 
skip | [n] [-n] |, 66 
sort to tablename on fieldname 

[descending], 46 
soundex(string), 164 
sqrt(n), 12 
str(number), 30 
strconv(string,n), 108 
string function ‘vn’, 162 
strtofile(stringname,’filename’), 39 
strtran(string,characters1,characters

2), 41 
stuff(string,n1,n2,character), 108 
substr(string,n1,n2), 108 
sum [fieldname to variable ] [for 



Appendix 

 

230 

condition], 63 
suspend, 161 
tan(n), 13 
text…endtext, 107 
time(), 162 
total to tablename on fieldname, 48 
upper(string), 46 

use tablename, 25 
use tablename alias aliasname, 115 
val(string), 103 
wait message window at rownumber, 

columnnumber timeout seconds, 
161 

zap, 34



Index 

95% confidence interval, 28, 100 
add-one smoothing, 20 
alias, 116 
alpha-numeric data, 23 
annotated wordlists, 132 
arc length, 22 
arithmetic mean, 63 
arrays, 142 
ASCII, 40, 103, 105 
asymptotic properties, 169 
automatic table modification, 27 
base 10, 8 
base 2, 8, 76 
bigram, 68 
binary machine codes, 30 
binomial distribution, 61, 92 
BNC, 2, 18, 58, 67, 123, 165 
Brown Corpus, 123, 140 
case sensitive, 4 
centre justification, 87 
centre-justifies, 106 
character data, 4, 34 
character matching mode, 4 
character operators, 4 
child table, 115 
Chinese characters, 119 
chi-square test, 91 
CLAWS5 tag set, 126 
collocation, 91 
collocational association, 91, 92, 96 
command window, 3 
computational linguistics, 1 
concordance, 91, 128 
corpus, 28, 68, 103, 165 
corpus linguistics, 91 
cotextuality, 55 
data output, 50 
database management system, 2 
data-intensive, 1 
decimal places, 7, 17, 25, 26, 27 
default action, 52 

default aliases, 115 
default drive, 16, 18, 25 
default setting, 4, 15, 16, 149, 154, 

157 
diagnostic comparison, 1 
double-byte character, 109 
e, 8, 12 
entropy, 75 
field, 23 
file access attributes, 110 
file handle number, 110 
file pointer, 111 
Foxpro settings, 15 
Foxpro tables, 17, 23, 39, 71 
Foxpro variable, 3, 4, 23 
frequency spectrum, 71, 72 
general data, 23 
Good-Turing estimation, 20 
graphemic load, 97 
graphic data, 23 
H, 21 
hapax legomena, 21, 73, 165 
hapaxes, 73, 74 
h-point, 61 
ICE Corpus, 126 
ICE-GB Corpus, 126 
input data, 34 
interactive programming, 192 
Köhler´s self-regulating cycle, 55 
KWIC, 91 
language construct, 76 
language modelling, 83 
language planning, 1 
language technology, 1 
left justification, 106 
lemmatization, 170 
letter utility, 97, 98, 99 
lexical bundle, 88 
lexical constant, 74 
likelihood ratio, 91 
linguistic computing, 2, 19, 79 



Index 232 

linguistic measurements, 71 
linguistic system, 1 
LNRE, 58, 165, 169, 190 
LOB Corpus, 123, 140 
log, 8 
low-level file handling, 110 
macro operator, 28, 155 
manual modification, 26 
math operations, 7, 63 
mathematical methods, 1 
memo field, 23, 24 
modelling of linguistic structures, 1 
multi-field tables, 23 
multiple conditions, 157 
mutual information, 91 
naming of a table, 23 
natural base, 8, 12 
natural language processing, 61, 68, 

75, 91 
nested, 30 
N-gram, 68 
N-gram smoothing, 20 
nomological net, 1 
numeric data, 4, 23, 34, 63 
numeric operators, 4 
Open ANC, 125 
overwrite, 16 
parameters, 76 
parent table, 115 
pattern matching, 82 
per-letter entropy of English, 75 
perplexity, 75 
per-word entropy, 75 
phonemic load, 97 
pie chart, 197, 199 
POS tag, 18, 103, 125 
primary verbs, 100 
probability, 61, 75 
procedures, 142 
project, 194 
quantitative data, 1 
quantitative linguistic computing, 

103 

quantitative linguistics, 1, 61, 71 
quantitative models, 1 
random numbers, 10, 11 
randomness, 11 
range, 23 
record, 23 
record number, 45 
record pointer, 36 
relational operators, 4 
remainder, 6, 11 
repeat rate, 136, 138, 139 
right collocates, 92 
round off, 9 
semi-auxiliaries, 100 
sentence length, 23 
simple tables, 23 
SPSS, 50 
square root, 12 
standard deviation, 28, 65, 73 
statistical test procedures, 1 
string handling, 103 
string literal, 5, 28, 32 
string manipulation, 103 
syllabic length, 79 
syllabic structure, 76 
syllables, 76 
t test, 91 
table creation, 24 
table designer, 26 
tagged corpora, 123, 126 
theory construction, 1 
tokenization, 119 
tokenize, 39, 44, 54, 119 
trigram, 68 
TTR, 19, 20 
Type/Token ratio, 19 
untagged corpora, 123 
user-defined functions, 142 
value assignment, 4 
variable names, 3, 4 
variance, 65 
verb idioms, 100 
Visual FoxPro, 2 



Index 

 

233

vocabulary growth, 28, 58, 73, 74 
vocabulary richness, 58, 61, 74 
vocabulary size, 58 
vowel cluster, 76 
wild cards, 81 
word classes, 186 
word frequency, 23, 48, 54, 61, 71, 

74 

word frequency distribution, 165 
word length, 23, 54, 64, 65, 73, 76 
word tokens, 58, 63, 140 
word types, 63 
work area, 32 
XML, 125, 141 
Yule’s K, 74 
Zipf rank, 61 

 
 


	Preface
	Table of Contents
	1. Introduction
	2. Foxpro Tables
	3. Number Crunching and Pattern Matching in Foxpro Tables
	4. String Manipulation in Tables and Texts
	5. Arrays, Procedures and User-defined Functions
	6. Interactive Programming, Program Packaging and Foxpro Graphs
	Appendix
	Foxpro Operators, Commands and Functions
	Index

