Michal Hovanec - Samer Al-Rabeei - Volodymyr Tymofiiv

# Implementation of Plant Simulation in the Practice Application of the Logistic Process

Part 1

RAM-Verlag 2025

#### **Reviewers:**

Doc. Ing. Mindala, PhD., Republic of Poland Prof. Ing. Naqib Daneshjo, PhD., Slovak Rebuplic Ing. Christian DIETRICH, PhD., Germany

Title:

# **Implementation of Plant Simulation in the Practice Application of the Logistic Process**

# Part 1

© Assoc. prof. Michal Hovanec Ing. Samer Al-Rabeei. PhD Ing. Volodymyr Tymofiiv, PhD.

# **CONTENTS**

| INTR | ODUCI  | TION                                                      | 1  |
|------|--------|-----------------------------------------------------------|----|
|      |        | ANCE OF GOODS TRANSPORTATION GAL REGULATIONS IN LOGISTICS | 5  |
| 1.1. | OVERV: | IEW OF LOGISTICS AND ITS IMPORTANCE                       | 5  |
| 1.2. | THE RO | LE OF INTERNATIONAL STANDARDS IN LOGISTICS                |    |
|      | REGULA | ATION                                                     | 6  |
| 1.3. | OVERV  | IEW OF INTERNATIONAL STANDARDS IN LOGISTIC                | 8  |
|      | 1.3.1. | Transportation Standards                                  | 9  |
|      | 1.3.2. | Warehousing and Distribution Standards                    | 10 |
|      | 1.3.3. | Customs and Compliance Standards                          | 12 |
|      | 1.3.4. | Environmental and Sustainability Standards                | 13 |
| 1.4. | KEY IN | TERNATIONAL STANDARDS RELEVANT                            |    |
|      | TO LOG | ISTICS                                                    | 14 |
|      | 1.4.1. | Integrated management system for logistics                | 14 |
|      | 1.4.2. | ISO 9001 Quality Management System                        | 15 |
|      | 1.4.3. | ISO 14001 – Environmental Management                      |    |
|      |        | System                                                    | 18 |
|      | 1.4.4. | ISO 45001 – Occupational Health and Safety                |    |
|      |        | Management System                                         | 20 |
|      | 1.4.5. | ISO/IEC 27001 – Information Security                      |    |
|      |        | Management System                                         | 23 |
|      | 1.4.6. | IMS implementation process                                |    |
| 1.5. | INTEGR | ATED SUSTAINABILITY MANAGEMENT                            |    |
|      | SYSTEM | 1 FOR LOGISTICS                                           | 27 |
|      | 1.5.1. | Quality improvement tools                                 | 29 |
|      | 1.5.2. | The impact of international standards                     |    |
|      |        | on logistics                                              | 34 |

| 2. RI        | SK ASS                                           | ESSMENT AND MANAGEMENT36                        |  |
|--------------|--------------------------------------------------|-------------------------------------------------|--|
| 2.1.         | PRINCIP                                          | LES OF RISK ASSESSMENT36                        |  |
| 2.2.         | RISK AS                                          | SESSMENT DURING EXPOSURE                        |  |
|              | TO BIOL                                          | OGICAL AGENTS41                                 |  |
| 2.3.         | ASSESSMENT OF RISKS RELATED TO THE SPREAD OF THE |                                                 |  |
|              | SARS-CoV-2 coronavirus44                         |                                                 |  |
|              | 2.3.1.                                           | Risk management and its importance in           |  |
|              |                                                  | logistics management48                          |  |
|              | 2.3.2.                                           | Risk management approaches and strategies in    |  |
|              |                                                  | logistics management49                          |  |
|              |                                                  |                                                 |  |
| 3. FC        | OOD SA                                           | FETY ACCORDING TO ISO 22000                     |  |
| $\mathbf{A}$ | ND HAC                                           | CCP51                                           |  |
|              |                                                  |                                                 |  |
| 3.1.         |                                                  | AFETY MANAGEMENT - ISO 2200051                  |  |
|              | 3.1.1.                                           | Scope of the Food Safety Management53           |  |
|              | 3.1.2.                                           | Terms and definitions of the Food Safety        |  |
|              | 2.1.2                                            | Management                                      |  |
|              | 3.1.3.                                           | Food Safety Management System                   |  |
|              | 3.1.4.                                           | Management responsibility of ISO 2200059        |  |
|              | 3.1.5.                                           | Resource management of ISO 2200064              |  |
| 3.2.         |                                                  | ANALYSIS CRITICAL CONTROL                       |  |
|              | POINTS                                           | (HACCP)65                                       |  |
|              | 3.2.1.                                           | Planning and implementing safe products67       |  |
|              | 3.2.2.                                           | Validation, verification and improvement of the |  |
|              |                                                  | food safety management system80                 |  |
| 3.3.         | PREVEN                                           | TIVE PRACTICES FOR SAFE FOOD HANDLING84         |  |
|              | 3.3.1.                                           | Determination of critical control points84      |  |
|              | 3.3.2.                                           | Control point CP1 – Receipt of GOODS87          |  |

|                      | 3.3.3.                                                                       | Control point CP2 – Food storage in a dry        |
|----------------------|------------------------------------------------------------------------------|--------------------------------------------------|
|                      |                                                                              | warehouse89                                      |
|                      | 3.3.4.                                                                       | Critical Control Point CCP1 – Food storage in    |
|                      |                                                                              | refrigeration and freezing equipment91           |
|                      | 3.3.5.                                                                       | Control point CP3 – Rough preparation of raw     |
|                      |                                                                              | materials and handling them97                    |
|                      | 3.3.6.                                                                       | Control point CP4 – Clean preparation and        |
|                      |                                                                              | handling of raw materials99                      |
|                      | 3.3.7.                                                                       | Control point CP5 – Heat treatment101            |
|                      | 3.3.8.                                                                       | Control point CP6 – Direct food delivery103      |
|                      | 3.3.9.                                                                       | Critical control point – CCP2 – Dispensing       |
|                      |                                                                              | of food from the warm counter103                 |
|                      | 3.3.10.                                                                      | Critical control point – CCP3 – Cooling, storing |
|                      |                                                                              | food in a refrigerator105                        |
|                      | 3.3.11.                                                                      | Control point CP7 – Transportation of food106    |
|                      |                                                                              |                                                  |
|                      |                                                                              |                                                  |
| 4. A                 | COMPA                                                                        | ARATIVE STUDY TO DEFINE                          |
|                      |                                                                              | ARATIVE STUDY TO DEFINE LE SOFTWARE108           |
| SI                   | UITABL                                                                       | E SOFTWARE 108                                   |
| \$1<br>4.1.          | UITABL<br>Select                                                             | ING AN APPROPRIATE MODELLING METHOD108           |
| 4.1.<br>4.2.         | UITABL<br>Select<br>Requir                                                   | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.         | UITABL<br>SELECT<br>REQUIR<br>COMPA                                          | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.         | SELECT<br>REQUIR<br>COMPAI<br>4.3.1.                                         | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.         | SELECT<br>REQUIR<br>COMPAI<br>4.3.1.<br>4.3.2.                               | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.         | SELECT<br>REQUIR<br>COMPAI<br>4.3.1.<br>4.3.2.<br>4.3.3.                     | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.         | SELECT<br>REQUIR<br>COMPA:<br>4.3.1.<br>4.3.2.<br>4.3.3.<br>4.3.4.           | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.         | SELECT<br>REQUIR<br>COMPAI<br>4.3.1.<br>4.3.2.<br>4.3.3.                     | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.         | SELECT<br>REQUIR<br>COMPA:<br>4.3.1.<br>4.3.2.<br>4.3.3.<br>4.3.4.           | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.<br>4.3. | SELECT<br>REQUIR<br>COMPA:<br>4.3.1.<br>4.3.2.<br>4.3.3.<br>4.3.4.<br>4.3.5. | ING AN APPROPRIATE MODELLING METHOD              |
| 4.1.<br>4.2.<br>4.3. | SELECT<br>REQUIR<br>COMPAI<br>4.3.1.<br>4.3.2.<br>4.3.3.<br>4.3.4.<br>4.3.5. | ING AN APPROPRIATE MODELLING METHOD              |

| 5.2.         | SIMULATION PROCESS                      |                                              | 128   |
|--------------|-----------------------------------------|----------------------------------------------|-------|
|              | 5.2.1. T                                | ypes of simulation                           | 129   |
| 5.3.         | SIMTALK APPLICATION IN PLANT SIMULATION |                                              | 129   |
|              | 5.3.1. M                                | lain commands of SimTalk                     | 130   |
| 5.4.         | SIMULATIO                               | ON ACTIVITIES                                | 134   |
|              | 5.4.1. K                                | ey warehouse simulation options              | 135   |
|              |                                         | ecessary steps before running the simulation |       |
|              | m                                       | odel                                         | 136   |
|              | 5.4.3. F                                | rst steps in warehouse simulation            | 136   |
|              | 5.4.4. A                                | fter starting                                | 137   |
|              | 5.4.5. Se                               | etting preferences                           | 139   |
| 5.5.         | Working                                 | ENVIRONMENT                                  | 140   |
|              | 5.5.1. R                                | ibbon bar                                    | 141   |
|              | 5.5.2. C                                | lass library and toolbox                     | 142   |
|              | 5.5.3. M                                | lodel frame and console window               | 143   |
| 5.6.         | MODELLIN                                | G IN PLANT SIMULATION - MATERIAL FLOW.       | 145   |
|              | 5.6.1. A                                | pproach to modelling                         | 145   |
| 5.7.         | EXERCISE:                               | CREATE A MODEL STRUCTURE                     | 148   |
|              | 5.7.1. M                                | laterial flow modelling - mobile units       | 150   |
| 6. SA        | AFE4LOG                                 | SOFTWARE SOLUTIONS                           | 155   |
|              |                                         | CRIPTION OF THE PROJECT                      |       |
| 6.2.         |                                         | ON MODEL DESIGNED FOR THE NEEDS OF           | 133   |
| 0.2.         |                                         | I IN THE CONDITIONS OF THE SLOVAK REPU       | DI IC |
|              |                                         | IN THE CONDITIONS OF THE SLOVAK REPU         |       |
|              | AND NEIGH                               | BORING COUNTRIES                             | 130   |
| 7. T         | ECNOMA                                  | ΓΙΧ PLANT SIMULATION AND                     |       |
| $\mathbf{T}$ | HESAFE41                                | LOG PROJECT SOLUTION FOR                     |       |
| R            | OAD TRA                                 | NSPORT                                       | 158   |

| 7  | .1. Case s | TUDY 1: CONDITIONS FOR THE DEVELOPMI | ENT OF HRS |
|----|------------|--------------------------------------|------------|
|    | IN SLO     | VAKIA                                | 158        |
|    | 7.1.1.     | Transport networks in Slovakia       | 160        |
|    | 7.1.2.     | Specifics of logistics in Slovakia   | 166        |
|    | 7.1.3.     | AL modelling process and results     | 171        |
| 8. | CONCLU     | U <b>SION</b>                        | 182        |
| RE | FERENCI    | ES                                   | 183        |
| AC | KNOWLE     | EDGEMENTS                            | 189        |

### INTRODUCTION

The primary objective of this research is to enhance logistics safety and efficiency through the integration of digital risk management tools and simulation modeling. The study focuses on improving risk assessment methodologies, optimizing transport routes, and ensuring food safety compliance in logistics operations. By utilizing Siemens Tecnomatix Plant Simulation software, the research aims to develop a scalable and adaptable framework for managing risks in transport networks, particularly in the Slovak context.

The increasing complexity of transport logistics, combined with new challenges such as pandemic-induced disruptions, requires a thorough risk assessment. This study aims to analyze major risks in road, rail, and air transport, with a particular focus on Slovakia's logistics networks. Special attention is given to biological and contamination risks in food transport, which necessitate compliance with HACCP and ISO 22000 standards.

Digitalization has become an essential tool for improving logistics safety and efficiency. This study explores the role of digital transformation in risk management, including real-time monitoring, big data analytics, and mapping tools for predictive risk modeling. The evaluation of existing digital platforms will help determine their effectiveness in enhancing resilience within transport networks.

Simulation modeling plays a crucial role in optimizing logistics operations. This research focuses on using Siemens Tecnomatix Plant Simulation software to develop case studies and assess risk mitigation strategies. By creating digital models of transport processes, this study seeks to identify bottlenecks, improve transport efficiency, and test various logistics scenarios.

The COVID-19 pandemic highlighted the vulnerabilities in supply chains, border restrictions, and emergency transport regulations. This study examines how logistics adapted during the pandemic and evaluates strategies such as automated disinfection soluteons at airports. The research aims to propose a scalable frame-work that enhances crisis resilience in transport logistics.

By integrating these objectives, the study seeks to provide a comprehensive approach to modern risk management in logistics,

#### Introduction

combining traditional safety measures with advanced digital soluteons to enhance transport efficiency and resilience.

Figure 1 presents a flowchart that reflects the comprehensive research methodology used in this study. At the core of the diagram is the overarching concept of Research Methodology, which branches into five interrelated components.

The first segment focuses on the Literature Review and Theoretical Framework, where the study explores key components such as the role of international standards in logistics regulation and practices in risk assessment and management. This section establishes the theoretical underpinnings necessary to frame the subsequent methodological approaches.

The second component addresses Food Safety Management, emphasizing compliance with established frameworks such as ISO 22000 and HACCP. This section outlines how these standards contribute to the assurance of food safety throughout logistics operations.

The third section details the Data Collection and Analysis phase, which involves gathering real-world logistics data, including transport schedules and risk assessments. Additionally, a comparative study is conducted to identify and evaluate suitable software tools for logistics applications.

# Introduction

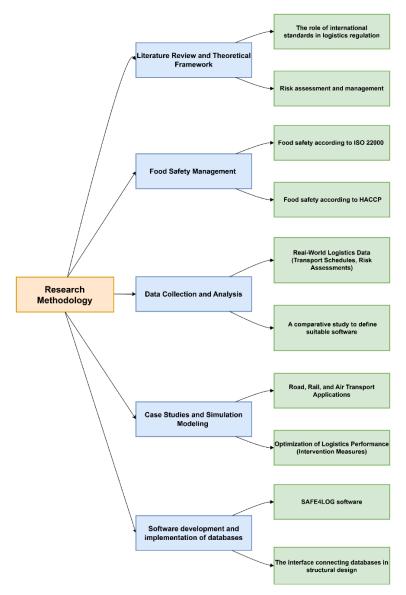



Figure 1. Research methodology of study

The fourth part of the methodology involves Case Studies and Simulation Modeling. It applies simulation techniques to various modes of transportation—road, rail, and air—and focuses on

# Introduction

optimizing logistics performance through targeted intervention measures. These simulations help test and refine strategies within real-world contexts.

The fifth segment is Software Development and Implementation of Databases, where the study develops and applies software solutions such as SAFE4LOG and examines interfaces that connect databases within structural design frameworks. This stage ensures that the tools and systems proposed are both functional and integrative within existing logistics infrastructure.